
 
 

VULNERABILITY INDEX FOR HEAT-RELATED MORTALITY IN 

GEORGIA, U.S.  

 

ABSTRACT 

Background: Heat is a natural hazard, and heat-related mortality is a matter of great public 

health concern. Exposure to extreme heat has been associated with both increased mortality and 

morbidity, especially for vulnerable populations. Methods: Collect vulnerability, atmospheric, 

air quality and mortality data. Quantify vulnerability index on a county level for the entire state 

of Georgia. Summary statistics for maximum daily temperature, minimum daily temperature, and 

daily number of death in summer season (May-September) Georgia, during 1995–2004. Use 

multiple Poisson regression to model the effect of the vulnerability index on deaths during 

extreme heat days. Results: Days that met or exceeded the 95th percentile threshold of summer 

maximum temperature showed greater increases in mortality than days that did not reach this 

threshold. Counties with the higher vulnerability levels had higher mortality on oppressive heat 

days compared to days that were not. Conclusion: Counties that have higher vulnerability levels 

have greater mortality increase for oppressive heat days versus non-oppressive heat days, 

compared to counties with lower vulnerability levels. 
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1. Introduction 

Heat is a natural hazard, and much is known about the effects of high temperatures on the 

human body. Heat-related mortality is a matter of great public health concern. Exposure to 

extreme heat has been associated with both increased mortality and morbidity. Several factors 

may increase the number of people that are exposed to extreme heat.  Lots of studies showed that 

excessive ambient heat exposures result in significant mortality to vulnerable populations 

(Applegate et al. 1981; Wainwright et al. 1999). Particular population subgroups are at increased 

risk of heat-related mortality, including the elder people (Medina-Ramon et al. 2006), people 

who live alone (Naughton et al. 2002; Semenza et al. 1996), people of lower income (Kaiser et al. 

2001), people of lower socioeconomic status (Rey et al. 2009), people of races other than white 

(O’Neill et al. 2003; Schwartz 2005), people with less education (Medina-Ramon et al. 2006; 

O’Neill et al. 2003), people with poor housing (Vandentorren et al. 2006), people without access 

to cooling devices such as air conditioning (Chestnut et al. 1998; Curriero et al. 2002), and peo-

ple with preexisting health conditions such as cardiovascular disease, diabetes, renal disease, and 

pulmonary conditions (Schwartz 2005; Stafoggia et al. 2006, 2008). 

In this study, the overarching objectives are to (1) Summary statistics for maximum daily 

temperature, minimum daily temperature, and daily number of death in summer season (May-

September) Georgia, during 1995–2004, (2) quantify vulnerability index on county level for the 

entire state of Georgia, and (3) determine if a greater number of deaths occur during oppressive 

heat day than non-oppressive heat day, investigate the vulnerability index and mortality 

hypothesis where vulnerability modifies the relationship of oppressive heat days and mortality; 

that is, higher vulnerability levels will show greater mortality increase for oppressive heat days 

versus non-oppressive heat days, compared to counties with lower vulnerability levels.   



2 
 

 

2. Background 

2.1 Heat wave and Climate Change 

Heat is a natural hazard, and much is known about the effects of high temperatures on the 

human body. Extreme hot weather conditions are projected to increase in frequency, severity, 

and duration in many parts of the world because of climate change (Meehl et al. 2004).  Over the 

20th century, the average annual temperature in the United States increased by 1F (NAST 

2000). Annual average temperatures for the region in the 2050s have been projected to rise by 

2.5F to 6.5F, with summer temperature increases of 2.7F to 7.6F (Rosenzweig et al. 2001). 

The Intergovernmental Panel on Climate Change (2007) reported that climate change is likely to 

lead to more intense and frequent extreme weather events. With climate change, hotter climates 

are expected to result in higher mean summer temperatures and fluctuations will likely result in 

more frequent and intense heat waves (Patz et al. 2005). Moreover, even a small shift in the 

mean temperature will entail a non-linear large increase in the frequency of extreme weather 

events, such as heat waves (Meehl et al. 2007). Global warming could determine physical 

environment alterations, social-economic disruptions, and adverse health consequences for 

human health on a large scale (Stern et al. 2007). 

 A study used an air mass-based synoptic procedure to evaluate historical weather–

mortality relationships, data from 44 large U.S. cities were analyzed for air masses identified in 

each city, and for each air mass the weather–mortality relationship was estimated (Kalkstein et al. 

1997). 

 Urban areas, can be particularly vulnerable to heat because of high concentrations of 
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susceptible people (Hajat et al. 2007), the urban heat island effect (Smargiassi et al. 2009), and 

the interaction between air pollution and heat (Ren et al. 2006). Urban heat islands are created 

when human-made surfaces in cities made of concrete, asphalt, metal, and stone absorb incident 

sunlight during the day, which is re-radiated as heat, especially at night. Several studies have 

shown that under clear skies and light wind conditions, cities are typically hotter than 

surrounding rural environments by up to 10C (Shepherd et al. 2004; Bornstein et al. 2006). 

Studies have shown that the albedo, or reflectivity, of an urban area is one of the most important 

determinants of the magnitude of the heat island (Kolokotroni et al. 2008). Urban surfaces which 

have low albedos and absorb much of the incoming solar radiation will remain warm in 

comparison to surrounding areas even with the absence of the sun (Taha et al. 1997). This, along 

with few trees and grass to provide cooling, produces an overall effect of urban areas tending to 

have higher surface temperatures than surrounding rural areas (Bornstein et al. 2006). There is 

also an interaction effect between heat and air pollution. A positive association between 

temperatures >90°F and ground-level ozone production had been found (Patz 2000).   

As a state located in the southeastern United States, Georgia is often affected by extreme 

heat, hot and humid summers are typical. The highest temperature ever recorded is 112 oF . For 

major Georgia Cities, the average maximum temperature in July is 91 oF in Athens, 88 oF in 

Atlanta, 92 oF in Augusta, 92 oF in Savannah, and 93 oF in Macon.  

 

2.2 Heat related mortality 

Heat exposure’s physiological effects range from symptoms such as dizziness, weakness, 

fatigue  to multi-organ failure, coma and death (Wexler. 2002), in the case of heat stroke, heat 
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exhaustion, heat syncope, or heat cramps (Keatinge et al. 2000). The initial human physiologic 

response to heat exposure is increasing surface blood circulation, thereby promoting heat loss 

through radiation, convection, perspiration, and increased rates of evaporative cooling (Knochel 

1989). Under extreme or chronic heat stress, the body loses its ability to maintain temperature 

balance and death may occur. The most common cause of death attributable to heat is heat stroke, 

it has a substantial case-mortality ratio, and progression to death can be very rapid (within hours). 

In survivors, the permanent damage to organ systems can cause severe functional impairment 

and increase the risk of early mortality (Wallace et al. 2007). Other causes of death observed to 

increase following heat exposure include heart disease, diabetes, stroke, and respiratory diseases 

(Ellis, 1972). 

Studies have shown that the total impact of a heat wave event will be dependent on a 

number of factors including heat wave intensity, duration, timing in season, location and 

magnitude (Hajat and Kosatky 2010; Hoffmann et al. 2008), population experience of heat wave 

events, and public health responses (Koppe et al. 2003). One study showed that duration 

sometimes modified heat wave mortality effects (Kalkstein et al. 1993). Heat waves earlier in the 

summer can be more hazardous to health than those later in the summer (Anderson and Bell 

2011). Another study found greater mortality effects for longer heat waves (Diaz et al. 2002).  

 The association between heat and mortality has been reported since the early 20th 

century. A study reported excess deaths associated with elevated ambient temperature exposure 

in 86 U.S. cities from 1925 to 1937 (Gover 1938). In recent years, several devastating heat waves 

have caused large health consequences all across the world. For example, in a 1980 heat wave, 

there were 1,700 deaths in the United States (CDC, 1995); the 1987 heat wave in Athens caused 

more than 2000 deaths (Katsouyanni et al. 1998); the 1995 heat wave in which maximum 



5 
 

temperatures in Chicago, Illinois, ranged from 93 to 104°F, caused around 700 deaths, most of 

which were directly attributed to heat (Semenza et al. 1996), the number of deaths reported 

increased by 85%, and the number of hospital admissions increased by 11% compared with 

numbers recorded during the same period in the preceding year (Semenza et al. 1999); the 2003 

heat wave in Europe is estimated to have caused 15,000 excess deaths in France (Fouillet et al., 

2006), and overall 70,000 deaths in all European countries (Robine et al. 2003); and  the heat 

wave in California 2006 resulted in an increase in morbidity which included 16,166 excess 

emergency department visits and 1,182 excess hospitalizations state-wide (Knowlton et al. 2009).  

High temperatures had significant impacts on deaths from all causes, chronic bronchitis, 

pneumonia, ischemic heart disease, and cerebrovascular disease in England and Wales (Langford 

et al. 1995). Studies have examined hot temperatures in relation to total non-accidental deaths 

and cause-specific deaths (Stafoggia et al. 2006). The city- or region-specific temperature–

mortality relationship is often V-, U-, or J-shaped, with increases in mortality at temperatures 

above the hot threshold (Hajat and Kosatky 2010). One study found a U-shaped temperature-

mortality relationship in developing countries, with strong evidence of increased deaths on hot 

days (McMichael et al. 2008). Another study found an increase in mortality associated with 

elevated average temperature in Seoul, Beijing, Tokyo and Taipei in Asia (Chung et al. 2009). 

 

2.3 Vulnerability 

Vulnerability to heat-related mortality is marked by a variety of characteristics, including 

being elderly, living alone (Naughton et al. 2002; Semenza et al. 1996),  socially isolated (Rey et 

al. 2009), non-white race (O’Neill et al. 2003; Schwartz 2005), being less educated (Medina-
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Ramon et al. 2006; O’Neill et al. 2003), outdoor laborers, lacking access to cooling devices such 

as air conditioning (Gouveia et al. 2003; Curriero et al. 2002), and with preexisting health 

conditions (Schwartz 2005; Stafoggia et al. 2006, 2008). 

The elderly and young children are regarded as populations that are especially vulnerable 

to the effects of heat and heat waves (Koppe et al. 2003), they may not be able to thermo regulate 

efficiently because of their impaired adaptation abilities, higher surface-area-to-mass ratio, 

higher sweating thresholds, thus increasing the risk of life-threatening consequences when their 

body temperatures rise (Lifschultz et al. 1998). When body heat production is greater than 

necessary to maintain a normal body temperature, blood flow from the body core to the skin 

increases, and heat is transferred more rapidly to the external environment. As a result, blood 

pressure may increase initially, and heart and respiratory rates increase (Bouchama et al. 2002). 

The risk for heat-related mortality increases sharply with age, as those 85 years of age or 

older are most at risk (CDC 1995). In the United States, an average of 274 people died due to 

heat-related causes each year, with the highest death rates occurring in persons at least 65 years 

of age (CDC. 2001). In California an increase in the daily mean apparent temperature of 10F 

leaded to an increase in non-accidental mortality among the elderly (Basu et al. 2008). In 15 

European cities, the relative risk of heat-related mortality was elevated for the 65–74 year old 

populations across countries (Bacchini et al. 2008). Research shows that temperatures increasing 

were associated with an increase in all-cause and cardiovascular mortality in the 75 year old and 

above population in Moscow, Russia (Revich et al. 2008). In Sydney, Australia, a study show 

there is a significant increase in mortality on extremely hot days for populations aged above 65 

years old (Vaneckova et al. 2010).  In Shanghai, China, for the above 65 years old population, the 
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number of deaths increased when the average temperature increased above a threshold (Huang et 

al. 2010). 

Numerous socioeconomic factors found to be significant predictors of vulnerability to 

heat include: African-American ethnic group (Kaiser et al. 2007), low level of education (O’Neill 

et al. 2003), lower income (Borrell et al. 2006), unemployment, and heavy physical labor 

(Vandentorren et al. 2006). Recent epidemiologic studies reported non-Whites to be at greater 

risk than Whites in the US (Schwartz et al. 2005). Research on the 1995 heat wave in Chicago 

indicates that heat related mortality among African Americans was 50% higher than among 

whites (Whitman et al. 1997). Also, populations of lower socioeconomic status may not have 

access to air-conditioned places because of the cost of air-conditioning (Semenza et al. 1996). 

Housing characteristics and behaviors specific to the elderly, including living alone, 

living in urban areas (Jones et al. 1982), living on the top floor of apartment buildings, lacking 

air conditioning, and keeping windows and doors closed for safety reasons, may increase 

mortality risk from heat exposure (Semenza et al. 1996). Study in St. Louis and Kansas City 

showed that alcoholism, living on higher floors of multistory buildings, and using major 

tranquilizers increased risk (Kilbourne et al. 1982). Another study showed that living alone and 

not leaving home daily increased risk (Senebza et ak, 1996).  

Several studies indicate that the heat-related mortality rates are higher in the urban area 

than in surrounding areas. One reason is the elevation in heat-related deaths in urban areas to the 

high population density (Buechley et al. 1972). The other suggested that urban areas retain heat 

throughout the night time more efficiently than the rural areas (Clarke, 1972). During a heat 

wave in St. Louis, higher mortality rates were recorded in the business and urban core areas than 
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in rural areas of the city (Smoyer 1998). Furthermore, populations of more deprived cities are at 

higher risk, even after adjusting for latitude (Curriero et al. 2002); and accordingly people in 

economically underprivileged neighborhoods within a city are usually more vulnerable to heat 

(O’Neill et al. 2003). 

Cities in the U.S. with higher air conditioning prevalence tend to have lower heat-related 

mortality (Chestnut et al. 1998).  Populations with lower socioeconomic status still have no or 

limited access to air conditioning. During the 1995 Chicago heat wave, the risk of dying during 

the heat wave was 70% lower among individuals with air conditioners than among individuals 

without air conditioners (Semenza et al. 1996).  

Extreme heat can have a deleterious effect on the health of persons who are already sick 

from other causes. Heat may affect these frail individuals differently depending on the disease 

they already have. People with chronic diseases of the heart or lungs may be more susceptible to 

the effects of high ambient temperatures (McGeehin et al. 2001). A study showed that there is an 

association between elevated temperatures and short-term increases in cardiovascular related 

hospital admissions for 12 U.S. cities (Schwartz et al. 2004). People with diabetes, chronic 

mental disorders, or other preexisting medical conditions are at greater risk from heat exposure 

(Kovats and Hajat 2008). People having a mental illness increased risk of heat-related mortality 

(Kaiser et al. 2001). People confined to bed or unable to care for themselves are at increased risk 

due to less fluid intake during heat waves (Semenza et al. 1996). 

 

3 Materials and Methods 

       3.1 Data Collection 
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       3.1.1 Mortality Data 

Georgia is a state located in the southeastern United States, which has 159 counties,  it is 

the 24th most extensive and the 9th most populous of the 50 United States. Atlanta is the state's 

capital and its most populous city. The United States Census Bureau estimates that the population 

of Georgia was 9,815,210 on July 1, 2011 (United States Census Bureau 2011). The majority of 

Georgia is primarily a humid subtropical climate. Hot and humid summers are typical, except at 

the highest elevations.   

We selected mortality data from all 159 counties in Georgia. The study period ranged 

from May to September, 1995 through 2004, since heat mortality is most likely to occur. County-

level mortality data for Georgia, from 1995-2004 were drawn from the National Center for 

Health Statistics (NCHS).   

Heat-related mortality will be examined during the summer months (May – September) 

when heat stress is most likely to occur. We used total mortality without exclude accidental death, 

since for small populations in rural counties; it is hard to stratify the death cause with few deaths 

per day. Also it is hard to acquire the cause of death and sometimes death may be caused by 

several factors included or related to heat.   

             3.1.2 Meteorological Data      

 The Maximum and minimum daily temperature obtained from the National Climatic 

Data Center (NCDC 2011). We used the 90th and 95th maximum and minimum temperature 

percentiles of the entire five month period and used the 90th and 95th maximum and minimum 

temperature percentiles of each month each year for every county in this study, and use these two 

values as a threshold indicating oppressive weather conditions. In all, there are eight measures 

http://en.wikipedia.org/wiki/Southeastern_United_States
http://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_area
http://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_population
http://en.wikipedia.org/wiki/50_United_States
http://en.wikipedia.org/wiki/Atlanta
http://en.wikipedia.org/wiki/United_States_Census_Bureau
http://en.wikipedia.org/wiki/Georgia_(U.S._state)#cite_note-PopEstUS-0
http://en.wikipedia.org/wiki/Humid_subtropical_climate
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which are summer 90th percentile max, summer 95th percentile max, summer 90th percentile min, 

summer 95th percentile min, monthly 90th percentile max, monthly 95th percentile max, monthly 

90th percentile min, and monthly 95th percentile min. We considered days over these percentiles 

as extremely hot days, and target the increase in mortality associated with extreme heat. In 

general, there are two basic ways of setting the temperature threshold: either by using a criterion 

whereby the trigger temperature is the result of the relationship between temperature and some 

health indicator, generally mortality; or, by using a statistical–meteorological criterion, in such 

cases, once the series of daily temperatures in recent years is known, excessive heat days are 

defined as those which exceed a given percentile (Pascal et al., 2006). Using these percentiles, 

rather than a cut-off value at a given temperature, the fact can be taken into account that 

individuals adapt to their local weather conditions (Medina-Ramon et al. 2007). In fact, heat 

mortality is higher in cooler climates than in warmer climates since the people are less 

acclimated to high temperatures (Kalkstein et al. 1997).  

A second measurement is the air mass, a measure of outdoor air conditions. These data 

were obtained from Athens, Atlanta, Augusta, Columbus, Macon, and Savannah, Chattanooga, 

Jacksonville, and Tallahassee stations. We use the Spatial Synoptic Classification (SSC; 

Sheridan 2003; Sheridan 2011) in this study.  For a given station, the SSC classifies each day 

into 1 of 7 weather types, or a transition between weather types.  We use two subdivisions of the 

Moist Tropical weather type in this study, Moist Tropical Plus (MT+) and Moist Tropical 

Double Plus (MT++).  Counties that were reported MT+ or MT++ air mass types on a particular 

day were considered as very warm, humid and were counted as having oppressive heat for that 

day. Conversely, counties that were grouped with a station that reported any other type of air 

mass or transition on a particular day were counted as not having oppressive heat for that day.             
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           3.1.3 Air Quality Data 

Many studies have demonstrated the effects of air pollutants have a clear correlation with 

the number of daily deaths and hospitalizations as a result of respiratory and cardiovascular 

diseases (Pope et al. 2002). Air pollution is a complex mixture of gaseous, volatile, semi-volatile 

and particulate matter and its exact composition varies widely. Indeed the composition in a 

single location will vary depending on the meteorological conditions, time of the day, day of the 

week, industrial activity and traffic density. 

This study used the Air Quality Index (AQI) available from the U.S. Environmental 

Protection Agency (EPA).  The AQI is an index for reporting air quality designed specifically for 

determining how clean or polluted the air is by monitoring 5 major air pollutants regulated by the 

Clean Air Act (Air Now 2012).  AQI values range from 0 to 500, and are separated into 6 

categories with “levels of health concern” and associated color code. The colors are displayed 

cartographically on the publicly available website AIRNOW.  The AQI calculates ground-level 

ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen oxide, each of which 

have the potential to cause adverse health effects within hours or days after exposure (Air Now 

2012).  Many rural areas lack data on air quality, so we haven’t get air quality data for every 

county in Georgia. 

Table 3.1.1 Air Quality Index and Levels of Health Concern 

AQI Value Levels of Health Concern Colors 

0-50 Good Green 
51-100 Moderate Yellow 

101-150 
Unhealthy for Sensitive 

Groups Orange 
151-200 Unhealthy Red 
201-300 Very Unhealthy Purple 
301-500 Hazardous Maroon 
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           3.1.4 Vulnerability data 

In this study, vulnerability data constructed uses eight vulnerability variables which are a 

combination of demographic, health, and land cover data. For demographic category, there are 

six variables which are percent population below poverty line, percent population greater or 

equal than 25 years of age with less than a high school diploma, percent population of a race 

other than white, percent population living alone, percent population greater or equal to 65 years 

of age, percent population greater or equal to 65 years of age and living alone. These variables 

were gathered from the Censtats data made available by the U.S. Census Bureau (USCB 2011) 

for the year 2000 on the county level for the state of Georgia. For health category, we use percent 

population ever diagnosed with diabetes, which gathered from the Behavioral Risk Factor 

Surveillance System (BRFSS) of Center for Disease Control and Prevention (CDC), which is a 

telephone survey conducted monthly by state on behavioral risk factors and preventative health 

practices for the year 2000 by county level for the state of Georgia.  And for land cover category, 

we use percent of county with land use/land cover described as urban; this data downloaded from 

the Georgia GIS Clearinghouse and displayed cartographically using ArcGIS software from 

Natural resource Spatial Analysis Lab at the University of Georgia. This dataset includes the 

following land cover types: Beaches/Dunes/Mud, Quarries/Strip Mines/Rock Outcrops, Open 

water, Low Intensity Urban, High Intensity Urban, Clear cut/Sparse, Deciduous Forest, 

Evergreen Forest, Mixed, Forest, Row Crops/Pasture, Forested Wetland (salt water), Forested 

Wetland (freshwater), and Non-forested Wetland (NRSAL 2011).  The Low Intensity Urban and 

High Intensity Urban types were added together to form one urban class, while all other land 

cover types are considered non-urban.  
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           3.2 Data analysis 

First, we calculated summary statistics for maximum daily temperature, minimum daily 

temperature, daily number of death, and vulnerability index for every county in summer season 

(May-September), during 1995-2004. 

Second, we used the Poisson Model for each county to estimate the present-day mortality 

risk in the summer season (May-September) comparing extreme hot days with non-oppressive 

days, and if counties with greater vulnerability respond with greater increases in mortality than 

counties with lower vulnerability. And then the results were combined into a random effects 

model. 

To ascertain the days which would have been classified as an oppressive heat day, we 

selected those days that met the condition of simultaneously exceeding the summer 95th 

percentile maximum temperatures for each county, based on this, we then defined this binary 

variable where 1 represents as oppressive days and 0 as non-oppressive days. 

We let Yit denote the total number of deaths on day t in county i, and assuming that Yit 

follows a Poisson distribution with mean μit.   

Yit  ~  Poisson ( it) 

For county i in day t,  

ln ( it)  =  0i + 1xit + 2vi + 3xit  vi + ns (year, df) 
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 it represents the mean of daily number of deaths over the whole period for each county.  

0i is a random intercept term, 1 is the slope of the oppressive heat indicator, and it is the 

estimated regression coefficient associated with oppressive heat.  xit is the indicator of oppressive 

days in i county on day t, known as s95max, which is a binary term where 1 represents as 

oppressive days and 0 as non-oppressive days. 2 is the slope of the vulnerability index value, 

which is the estimated regression coefficient associated with the vulnerability index value, and vi 

is the vulnerability index value.  3, is the interaction effect estimates of both the oppressive 

indicator value and the vulnerability index value. ns (year, df = 3) is a natural cubic spline 

function of time year with df=3 to control for unidentified possible confounders and over 

dispersion.  The vulnerability index values were rescaled from the original range of outcomes (6 

to 15) down to a range of values more compatible with this modeling approach (0 to 9), i.e. each 

county’s vulnerability index value was reduced by 6 for modeling purposes. 

    We will use this model to examine if oppressively hot days, as s95max=1, respond 

with greater mortality than days that were not oppressively hot, as s95max=0, and if counties 

with greater vulnerability, respond with greater increases in mortality on oppressive days than 

counties with lower vulnerability values. 

Analyses were first conducted separately for each county, and the cumulative effects 

were combined using random effects model. Because there was no heterogeneity of effect by 

county level, we present the results obtained after pooling the data and analyzing them jointly. 

We used a quasi-Poisson function that allows for over-dispersion in daily deaths for pooled 

regression. 
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Altogether, this model utilizes multiple Poisson regression to analyze mortality in 

Georgia, with mortality as the response variable and the vulnerability index and oppressive heat 

as the predictor variables.  The coefficients of the predictors in this model are used to describe 

the natural log of the relative risk (RR), which is the ratio of death occurring in oppressive heat 

days and the difference in the relative risk of mortality experienced on oppressive days versus 

non-oppressive days whether be greater in counties with greater vulnerability index values than 

counties with lesser vulnerability index values or not.   

To examine the heat effect on mortality, we evaluated the relative risk of all mortality 

associated with high temperature (> 95th percentile of summer temperature). We evaluated the 

model fit using deviance for quasi-Poisson. Our initial results showed that summer 95th 

percentile temperature was a better predictor. We use df=3 per year for time to control for 

season. 

    All the analyses were performed using R software (version 2.15.0).  

 

4. Results 

4.1 Summarize statistics  

 During summer season (May-September) in the period 1995-2004,  the maximum 

average daily temperature was 89.37°F (range 55.00–98.53°F), the minimum average daily 

temperature was 71.88°F (range 38.00–79.37°F).. The minimum number of death for each day 

and each county is 0, the maximum number of death for each day and each county is 43, and the 
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mean of the number of death is 1.013, the standard deviation of the number of death is 2.53 

(Table 4.1.1).  

The mean of the daily number of death for each county during summer season (May-

September) 1995-2004 ranges from 0 (Ben Hill County) to 21.47 (Fulton County). The mean of 

daily death of most rural counties are less than 1, but for larger counties, this number is more 

than 10 (De Kalb 12.24, Fulton 21.47).  Analysis the variance of each county’s daily death 

number using anova method showed that quite a lot county means are different from overall 

mean (F-value=7746.6, p-value<0.0001).  

 

 

Table 4.1.1 Summary statistics for maximum daily temperature, minimum daily 

temperature, and daily number of death in summer season (May-September) Georgia, during 

1995–2004 

 
Variables   Mean  Min Median Max SD* 

 

Max Daily Temperature (°F ) 

Min Daily Temperature (°F) 

 

  88.96 

  71.47 

 

55.00 

38.00 

 

90.01 

73.48 

 

110.20 

87.00 

 

6.63 

6.86 

No. of  Daily Death    1.01  0.00  0.00 43.00 2.53 

* SD is the standard deviation from the mean 
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The mean of the daily maximum temperature for each county during summer season 

(May-September) 1995-2004 ranges from 86.09°F  (Douglas County) to 91.71 (Decatur County). 

Analysis the variance of each county’s daily maximum temperature using anova method showed 

that a lot county means are different from overall mean (F-value=115.63, p-value<0.0001).  

A heat vulnerability index was developed from eight variables which are demographic, 

health, and land use variables.  The variable “race other than white” had the greatest range 

among counties (1.71 – 78.70); and the variable “urban” also has a large range (2.44 – 60.62).  

These two variables observed much greater standard deviations from the mean compared to the 

other variables (race other than white 16.95, urban 9.53).  However, the range of “live along” 

(7.75-13.96) and “diabetes” were quite small (5.01-12.80), the standard deviations of these two 

variables were much smaller (live alone 1.71, diabetes 1.43), having much less variation among 

different counties.  Counties had an average of 29.29% for “population with less than a high 

school degree”, with range from 7.6% to 43.80% and 28% for “population age more than 65 that 

live alone”, with range from 18.82% to 38.66% (Table 4.1.2). 
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Table 4.1.2 Summary statistics for the eight vulnerability index variables in Georgia, during 
1995–2004 
 
Variables    Mean Min      Median Max SD* 
      

Below Poverty                                16.11 3.81      16.40 28.60 5.37 

Less than a high school degree 29.29 7.60      30.30 43.80 7.54 

Race other than white 32.40 1.71      32.00 78.70 16.95 

Live alone 8.52 7.75      8.72 13.96 1.71 

Age> 65 12.04 1.80      12.17 25.85 3.36 

Age> 65 and live alone 28.03 18.82      28.31 38.66 3.88 

Diabetes 9.12 5.01      9.00 12.80 1.43 

Urban 9.36 2.44      6.07 60.62 9.53 

 

* SD is the standard deviation from the mean 

First, a spearman’s rank correlation was used to identify the level of association among 

the eight variables. It shows a great amount of association among many of the variables (Table 

4.1.3). Below poverty is highly positive associated with variables which are having less than a 

high school diploma, being a race other than white, being 65 years of age or older and living 

alone, and having diabetes. Having less than a high school diploma is highly positive associated 

with being 65 years of age or older, and is highly negative associated with urban. Being a race 

other than white is highly positive associated with having diabetes. The association between 

living alone and being 65 years of age or older is the highest among these variables.  Being 65 

years of age or older is also highly positive associated with diabetes. The only variable that 
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showed any negative association with other variables was percent urban land cover, which was 

negatively correlated with all other variables.  

A principal component analysis was used for data reduction because of the strong 

associations among the input variables.  Three Factors which represent social 

isolation/prevalence of elderly/poor health (diabetes), poverty/proportion of people of a race 

other than white, and education/land use explain 82% of the variability. A value of 1 represented 

the least vulnerable score for that factor in the respective county while a value of 6 represented 

the highest value of vulnerability.   

 

 
Table 4.1.3 Spearman’s correlation values for vulnerability variables for all counties in Georgia 
during 1995-2004 (n=159). 

  Poverty 

Less 
than 
high 
school 
diploma 

Race 
other 
than 
white 

Live 
alone 

Age ≥ 

65 

Age ≥ 

65 and 
live 
alone Diabetes Urban 

Below Poverty 1.0000 
       Less than high 

school diploma 0.6622  1.0000  
      Race other than 

white 0.6823 0.2754  1.0000  
     Live alone 0.5427 0.3304 0.4088   1.0000  

    
Age ≥ 65 0.4600 0.4916 0.1733 0.7430  1.0000  

   Age ≥ 65 and 

live alone 0.7131 0.5814 0.4066  0.5621 0.3747  1.0000  
  Diabetes 0.6474 0.4705 0.6107 0.6366 0.6923 0.4314  1.0000  

 Urban -0.5666 -0.5547   -0.3399 -0.2801 -0.4107  -0.4191 -0.5342   1.0000  
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These three factors were combined into a total vulnerability index value score between 3 

(low vulnerability) and 18 (high vulnerability), for each county level range from 6 

(Chattahoochee County) to 15 (Clay, Taliaferro County). The mean of Vulnerability Index is 

10.42. Baker, Bibb, Brooks, Chatham, Clarke, Clay, Clayton, Cobb, Crisp, Decatur, Early, 

Fannin, Fulton, Glynn, Greene, Gwinnett, Hancock, Hart, Jefferson, Jenkins, Muscogee, Rabun, 

Randolph, Richmond, Screven, Stephens, Stewart, Talbot, Taliaferro, Taylor, Terrell, Thomas, 

Troup, Union, Warren, Wilkes counties have high vulnerability index which is greater than 12. 

Most of these counties are located in the large cities; some of these located in the east-central 

Georgia and southwestern Georgia. The high values for these counties mostly contributed to 

Factor 1. 

Table 4.1.4 Summary statistics for vulnerability index in summer season (May-September) 
Georgia, during 1995–2004 
 
Variables Mean  Min Median Max SD* 

Vulnerability Index 10.42 6.00 10.00 15.00 1.74 

 

* SD is the standard deviation from the mean 

 

4.2 Statistic Model 

During the summer season (May- September) from 1995 to 2004 in 159 counties of 

Georgia, we used the 95th maximum temperature percentiles of the entire five month period each 

year for every county in this study, and use this variable as a threshold indicating oppressive heat 

weather conditions. We rescaled vulnerability index value from an original range of 6-15 to 0-9.  

Then, each of the nine oppressive heat indicators was tested to see whether it indicated increased 

mortality by using the statistic model in section 3.2.   
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The slope of 95th percentile summertime maximum temperature is -0.035, the slope of 

vulnerability index is 0.105, the slope of interaction term of 95th percentile summertime 

maximum temperature and vulnerability index is 0.012. The interaction term showed a 

statistically significant effect (P-value=0.0049). For oppressive heat days (the 95th percentile 

summertime maximum temperature =1), the slope of vulnerability index = 0.105+0.012 = 0.117, 

exp(0.117)=1.124 is the risk increase in daily number of death for 1 unit increase in vulnerability 

index.  In other words, 12.4% increase in mortality for 1 vulnerability index increase on 

oppressive heat days. For non-oppressive heat days, (the 95th percentile summertime maximum 

temperature =0), the slope of vulnerability index = 0.105, exp(0.105)=1.111 is the risk increase 

in mortality for 1 unit increase in vulnerability index.  In other words, 11.1% increase in 

mortality for 1 vulnerability index increase on non-oppressive heat days. 

The slope of 95th percentile summertime maximum temperature = (-0.035+ 0.012* 

vulnerability index). For vulnerability index > 3, the slope of 95th percentile summertime 

maximum temperature is positive which corresponds to increasing in mortality.  For example, if 

vulnerability index =12, the slope of 95th percentile summertime maximum temperature = 

0.0344. This corresponds to 3.5% increase (exp (0.034) =1.035) in mortality due to oppressive 

heat days compare to non-oppressive heat days. 

The relative risks for oppressive and non-oppressive days indicate that the mortality 

increases in both conditions as vulnerability increases.  However, the risk of mortality does not 

increase at the same rate.  On oppressive days, the risk increases at a greater rate than on non-

oppressive days as the vulnerability index increases.  This signifies that summertime 95th 

percentile maximum temperature is an adequate indicator of increased risk of mortality. 
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 The results of the model indicate a lesser effect with low values on the vulnerability 

index, but a greater effect with high vulnerability index values (Table 4.2.1).  For instance, an 

vulnerability index value of 6 indicated a slightly negative association with mortality; meaning 

that counties with the lowest vulnerability index value showed greater mortality on days that 

were not oppressively hot than on days that were considered oppressively hot.  However, this 

relationship was not statistically significant.  Greater values on the vulnerability index value 

show a positive association with mortality, starting at an HVI value of 7, the relative risk 

becomes greater than one, starting at an HVI value of 9, the relative risk for oppressive heat days 

become higher than non-oppressive heat days, signifying that the number of mortalities on 

oppressive days is greater than the number of mortalities on non-oppressive days.  As values on 

the vulnerability index value increase, the proportion of deaths on oppressive days to deaths on 

non-oppressive day’s increases as well.  This models shows that greater HVI values indicate 

greater relative risks.  In other words, counties with greater vulnerability, respond with greater 

increases of mortality rates on days that are oppressive than counties with less vulnerability. 
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Table 4.2.1 Output from the statistic model for vulnerability index values and 95th percentile 
summertime maximum temperature 
 
Vulnerability Index   Oppressive days 

ERC*                  RR** 

 Non-oppressive days 

ERC*                   RR** 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

-0.035               0.966 

0.082                1.085 

0.199                1.220 

0.316                1.372 

0.433                1.542 

0.550                1.733 

0.667                1.948 

0.784                2.190 

0.901                2.462 

1.018                2.768 

 

 0                           1 

0.105                   1.111 

0.210                   1.234 

0.315                   1.370 

0.420                   1.522 

0.525                   1.690 

0.630                   1.878 

0.735                   2.085 

0.840                   2.316 

0.945                   2.573 

 
 

* ERC is the estimated regression coefficient  

** RR is the relative risk for daily number of death 
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5. Discussion and Conclusion 

An increase in the frequency, duration and intensity of oppressive heat days is one of the 

most certain impacts of global climate change, and therefore, it is important to characterize the 

heat-related health risks. 

In this study, we examined the effects of heat and vulnerability index on mortality in 

summer season (May-September), Georgia, during 1995–2004. In general, we found that the 

temperature-mortality relationships were non-linear for all mortality type. Extreme hot 

temperatures had negative impacts on health; vulnerability index had positive impacts on 

mortality, the greater the vulnerability index, the more number of daily deaths.  

We summary statistics for maximum daily temperature, minimum daily temperature, and 

daily number of death in summer season (May-September) Georgia, during 1995–2004. The 

vulnerability index value was mapped, which included a range of 10 levels across the state.  

Highest vulnerabilities were found in the metro Atlanta area around Fulton County and the 

southwestern part of the state around Clay Count, although islands of high vulnerability can be 

seen in Taliaferro, Bibb, Richmond, and Chatham counties.  The lowest areas of vulnerability 

were found encircling the high vulnerability counties of metro Atlanta, as well as the 

southeastern part of the state near the Atlantic coast.  Lee and Chattahoochee Counties had low 

vulnerabilities despite being in the Southwest. And then we use multiple Poisson regression to 

model the effect of the vulnerability index on deaths during extreme heat days. When coupled 

with mortality data, the vulnerability index value was modeled as an effect modifier of 

oppressive heat.  The oppressive heat indicator and vulnerability index values were used as 

predictor variables and mortality data were used as the response variable. Vulnerability index 
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values of 6 actually showed more mortality on non-oppressive days than oppressive days.  This 

interesting result may be explained by chance because of the lack of statistical significance.  

Starting with an vulnerability index value of 9, the relative risk for oppressive heat days is higher 

than non-oppressive heat days, signifying greater mortality on days with oppressive heat than 

days without oppressive heat.  As the vulnerability index value increased, so did the relative risk, 

meaning the ratio of mortality on oppressive days to non-oppressive days increased.  Thus, 

populations in high vulnerability counties were much more susceptible to heat-related mortality 

on oppressive heat days. 

The strengths of our study include the large number of population, which allowed the 

exploration of a large number of deaths. This allowed the detection in a single population of 

many conditions that have been only reported occasionally. Some rural counties had small 

numbers of deaths, and therefore less precision.  

Several limitations of this study must also be acknowledged. We only focused on one 

state, so the results might not be generalizable to other areas. However, the approaches applied in 

this study can be used in further research in other areas.  

We only use all-cause mortality with no stratifications for cause of death or demographic 

variables for the decreased. Since there are few deaths per day in small populations in many rural 

counties would make any stratification difficult, even during exceptional hot days, very few 

deaths are directly attributed to heat and the majority is instead ascribed to other causes, such as 

cardiovascular and respiratory diseases (Ostro et al. 2009).  

One limitation of the present study was the exclusion of air quality data for use as a 

confounding factor in the relationship between heat and mortality.  Many rural areas lack data on 
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air quality and therefore a comprehensive study could not be completed.  However, future work 

might include an analysis of a subset of counties with air quality data such as ground level ozone 

and small particulate matter. 

Additionally, we didn’t acquire air conditioning data.  Air conditioning data are only 

available in major metropolitan regions from the American Housing Survey.  This issue led Reid 

et al. (2009) to limit their study to only large cities, leaving rural areas unexamined.  Some 

studies showed a clear inverse relationship between air conditioning and heat mortality (Davis et 

al. 2003). However, the importance of including air conditioning data may vary in studies of 

different region.  Air conditioning prevalence of some kind (including both central and separate 

units) in Atlanta was at 93.8% in 1996 and 97% in 2004 (American Housing Survey 1997; 

2005). Air conditioning data would likely improve this study, but based on the results by Reid et 

al. (2009), and the nearly saturated air conditioning levels in the South, that not all areas with 

low air conditioning prevalence also had high overall vulnerability, and concluded that air 

conditioning was not driving the vulnerability index, the absence of it should not discredit the 

forthcoming analysis/results.  

In conclusion, the results of this study demonstrate counties that have higher vulnerability 

levels have greater mortality increase for oppressive heat days versus non-oppressive heat days, 

compared to counties with lower vulnerability levels. This finding may have implications for 

future studies of heat-related health effects. 

 

  

 



27 
 

REFERENCES 

 
Anderson G, Bell M. 2011: Heat waves in the United States: mortality risk during heat waves 

and effect modification by heat wave characteristics in 43 U.S. communities. Environ 
Health Perspect 119:210–218. 

 
Anderson BG, Bell ML 2009: Weather-related mortality: how heat, cold, and heat waves affect 

mortality in the United States. Epidemiology 20: 205–213. 
 
Applegate WB, Runyan JWJ, Brasfield L, Williams ML, Konigsberg C, Fouche C. 1981: 

Analysis of the 1980 heat wave in Memphis. J Am Geriatr Soc 29(8):337–342. 
 
Bacchini M, Biggeri A, et al. 2008: Heat effects on mortality in 15 European cities. 

Epidemiology 19(5):711–9. 
 
Basu R, Ostro BD. 2008: A multicounty analysis identifying the populations vulnerable to 

mortality associated with high ambient temperature in California. Am J Epidemiol 
168(6):632–7. 

 
Bornstein, R., and Coauthors, 2006: Modeling The Effects of Land-use/Land-cover 

Modifications on The Urban Heat Island Phenomena in Houston, Texas. Final Report to 
David Hitchcock Houston Advanced Research Center, 100 pp. 

 
Borrell C, Mari-Dell’Olmo M, Rodriguez-Sanz M, Garcia-Olalla P, Cayla JA, Benach J, et al. 

2006: Socio-economic position and excess mortality during the heat wave of 2003 in 
Barcelona. Eur J Epidemiol 21(9):633–40. 

 
Bouchama A, Knochel JP. 2002: Heat stroke. N Engl J Med 346:1978–88. 
 
Buechley RW, Van Bruggen J, Truppi LE. 1972: Heat island equals death island? Environ Res 

5:85–92 . 
 
Centers for Disease Control. 2001: Heat-related deaths—Los Angeles County, California, 1999-

2000, and United States, 1979-1998. Morb Mortal Wkly Rep 50(29):623–626. 
 
Centers for Disease Control and Prevention. 1995: Heat-related illnesses and deaths—United 

States, 1994-1995. Mor Mortal Wkly Rep 44:465–468. 
 
Chestnut LG, Breffle WS, Smith JB, Kalkstein LS. 1998:  Analysis of differences in hot-

weather-related mortality across 44 U.S. metropolitan areas. Environmental Science 
Policy 1(1):59–70.  

 
Chung J, Honda Y, Hong Y, Pan X, Guo Y, Kim H. 2009: Ambient temperature and mortality: 

An international study in four capital cities of East Asia. Science of the Total 
Environment 408:390–396. 

 



28 
 

Clarke JF. 1972: Some effects of the urban structure on heat mortality. Environ Res 5:93–104. 
 
Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, Patz JA. 2002: Temperature and 

mortality in 11 cities of the eastern United States. Am J Epidemiology 155(1):80–87. 
 
Davis, R. E., P.C. Knappenberger, P.J. Michaels, and M. Novicoff, 2003: Changing heat-related 

mortality in the United States.  Environ. Health Perspect., 111, 1712–1718. 
 
Diaz J, Jordan A, Garcia R, Lopez C, Alberdi JC, Hernandez E, et al. 2002: Heat waves in 

Madrid 1986–1997: effects on the health of the elderly. Int Arch Occup Environ Health 
75(3):163–170. 

 
Ellis FP. 1972: Mortality from heat illness and heat-aggravated illness in the United States. 

Environ Res 5:1–58. 
 
Fouillet, A, Rey, G, Laurent, F, Pavillon, G, Bellec, S, Guihenneuc-Jouyaux, C., Clavel, J., 

Jougla, E., and H´emon, D. 2006: Excess mortality related to the August 2003 heat wave 
in France. International Archives of Occupational and Environmental Health 80, 16–24. 

 
Gouveia N, Hajat S, Armstrong B. 2003: Socio-economic differentials in the tem-perature-

mortality relationship in Sao Paulo, Brazil. Int J Epidemiol.32. 
 
Gover M. 1938: Mortality during periods of excessive temperature. Public Health Rep 

53(27):1122–1143. 
 
Hajat S, Kovats RS, Lachowycz K. 2007: Heat-related and cold-related deaths in England and 

Wales: who is at risk? Occup Environ Med 64(2):93–100. 
 
Hajat S, Kosatky T. 2010: Heat-related mortality: a review and exploration of heterogeneity. J 

Epidemiol Community Health 64:753–760. 
 
Hajat S, Armstrong B, Baccini M, Biggeri A, Bisanti L, et al. 2006: Impact of high temperatures 

on mortality: is there an added heat wave effect? Epidemiology 17: 632–638. 
 
Hoffmann B, Hertel S, Boes T, Weiland D, Jöckel KH. 2008: Increased cause-specific mortality 

associated with 2003 heat wave in Essen, Germany. J Toxicol Environ Health A 71:759–

765. 
 
Huang W, Kan H, Kovats S. 2010: The impact of the 2003 heat wave on mortality in Shanghai. 

China Sci Total Environ 408(11):2418–22. 
 
 
Jones TS, Liang AP, Kilbourne EM, Griffin MR, Patriarca PA, Wassilak SG, Mullan RJ, Herrick 

RF, Donnell HD Jr, Choi K, et al. 1982: Morbidity and mortality associated with the July 
1980 heat wave in St. Louis and Kansas City, Mo. JAMA 247:3327–3331. 

 



29 
 

Kaiser R, Le Tertre A, Schwartz J, Gotway CA, Daley WR, Rubin CH. 2007: The effect of the 
1995 heat wave in Chicago on all-cause and cause-specific mortality. Am J Public Health 
97(Suppl 1):158S –62S. 

 
Kaiser R, Rubin C, Henderson A, Wolfe M, Kieszak S, Parrott C, et al. 2001: Heat-related death 

and mental illness during the 1999 Cincinnati heat wave. Am J Forensic Med Pathol 
22(3):303–307. 

 
Kalkstein LS, Greene JS. 1997: An evaluation of climate/mortality relationships in large U.S. 

cities and the possible impacts of a climate change. Environ Health Perspect 105:84–93. 
 
Kalkstein LS, Smoyer KE. 1993: The impact of climate change on human health: some 

international implications. Experientia 49(11):969–979. 
 
Katsouyanni K, Trichopoulos D, et al. 1998: The 1987 Athens heat wave. Lancet 2(8610):573. 
 
Keatinge WR, Donaldson GC, Cordioli E, Martinelli M, Kunst AE, et al. 2000: Heat related 

mortality in warm and cold regions of Europe: an observational study. Br. Med. J. 
321:670–73 

 
Kilbourne EM, Choi K, Jones TS, et al. 1982: Risk factors for heat stroke: a case-control study. 

JAMA 247:3332–6. 
 
Knochel JP. 1989: Heat stroke and related heat stress disorder. Dis Mon 35:301–378. 
 
Knowlton K, Rotkin-Ellman M, King G, Margolis HG, Smith D, et al. 2009: The 2006 

California heat wave: impacts on hospitalizations and emergency department visits. 
Environ Health Perspect 117: 61–67. 

 
Kolokotroni M, Giridharan R. 2008: Urban heat island intensity in London: An investigation of 

the impact of physical characteristics on changes in outdoor air temperature during 
summer. Solar Energy 82(11):986–998. 

 
Koppe C, Jendritzky G, Kovats RS, Menne B. 2003: Heatwaves: Impacts and Responses. 

Copenhagen: WHO 
 
Kovats RS, Hajat S. 2008: Heat stress and public health: a critical review. Annu Rev Public 

Health 29:41–55. 
 
Langford I, Bentham G. 1995: The potential effects of climate change on winter mortality in 

England and Wales. International Journal of Biometeorology 38:141–147. 
 
Lifschultz BD, Donoghue ER. 1998: Forensic pathology of heatand cold-related injuries. Clin 

Lab Med 18(1):77–90. 
 
McGeehin MA, Mirabelli M. 2001: The potential impacts of climate variability and change on 



30 
 

temperature-related morbidity and mortality in the United States. Environ Health 
Perspect 109(suppl 2):185–189. 

 
McMichael AJ, Wilkinson P, Kovats RS, Pattenden S, Hajat S, Armstrong B, Vajanapoom N, 

Niciu EM, Mahomed H, Kingkeow C, et al. 2008: International study of temperature, 
heat and urban mortality: the 'ISOTHURM' project. Int J Epidemiol 37:1121–1131. 

 
Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, et al. 2007: Global 

climate projections. In: Solomon S, Qin D, Manning M, et al, editors. Climate Change 
2007: The Physical Science Basis. Contribution of Working Group I to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: 
Cambridge University Press; 747–846. 

 
Meehl GA, Tebaldi C. 2004: More intense, more frequent, and longer lasting heat waves in the 

21st century. Science 305(5686):994–997. 
 
Medina-Ramon M, Schwartz J. 2007: Temperature, temperature extremes, and mortality: a study 

of acclimatization and effect modification in 50 United States cities. Occup Environ Med. 
 
Medina-Ramon M, Zanobetti A, Cavanagh DP, Schwartz J. 2006: Extreme temperatures and 

mortality: assessing effect modification by personal characteristics and specific cause of 
death in a multi-city case-only analysis. Environ Health Perspect 114:1331–1336. 

 
National Assessment Synthesis Team. 2000: Climate Change Impacts on the United States: The 

Potential Consequences of Climate Variability and Change. Cambridge, England: 
Cambridge University Press  

 
Naughton MP, Henderson A, Mirabelli MC, Kaiser R, Wilhelm JL, Kieszak SM, et al. 2002: 

Heat-related mortality during a 1999 heat wave in Chicago. Am J Prev Med 22(4):221–

227. 
 
O’Neill MS, Zanobetti A, Schwartz J. 2003: Modifiers of the temperature and mortality 

association in seven U.S. cities. Am J Epidemiol 157(12):1074–1082. 
 
Ostro BD, Roth LA, Green RS, Basu R. 2009: Estimating the mortality effect of the July 2006 

California heat wave. Environ Res 109(5):614–19. 
 
Pascal M, Laaidi K, Ledrans M, et al. 2006: France's heat health watch warning system. Int J 

Biometerol 50:144–53. 
 
Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. 2005: Impact of regional climate change 
          on human health. Nature 2005, 438, 310-317. 
 
Patz JA. 2000: Climate change and health: new research challenges. Ecosyst Health 6:52– 8. 
 
Pope C, Burnett R, Thun M, Calle E, Krewski D, Ito K, Thurston G. 2002: Lung cancer, 



31 
 

cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. 
JAMA 287: 1132-41. 

 
Reid, C. E., M. S. O’Neill, C. J. Gronlund, S. J. Brines, D. G. Brown, A. V. Diez-Roux and J. 

Schwartz, 2009: Mapping community determinants of heat vulnerability. Environ. Health 
Perspect., 117, 1730–6. 

 
Ren C, Williams GM, Tong S. 2006: Does particulate matter modify the association between 

temperature and cardiorespiratory diseases? Environ Health Perspect 114:1690–1696. 
 
Revich B, Shaposhnikov D. 2008: Temperature-induced excess mortality in Moscow. Russ Int J 

Biometeorol 52(5):367–74. 
 
Rey G, Fouillet A, Bessemoulin P, Frayssinet P, Dufour A, Jougla E, et al. 2009: Heat exposure 

and socioeconomic vulnerability as synergistic factors in heat-wave-related mortality. Eur 
J Epidemiol 24(9):495–502. 

 
Robine JM, Cheung SL, et al. 2008: Death toll exceeded 70,000 in Europe during the summer of 

2003. C R Biol 331(2):171–8. 
 
Rosenzweig C, Solecki WD, eds. 2001: Climate Change and a Global City: The Potential 

Consequences of Climate Variability and Change, Metro East Coast. New York, NY: 
Columbia Earth Institute 2001. 

 
Schwartz J. 2005: Who is sensitive to extremes of temperature? A case-only analysis. 

Epidemiology 16(1):67–72. 
 
Schwartz J, Samet JM, Patz JA. 2004: Hospital admissions for heart disease: the effects of 

temperature and humidity. Epidemiology 15:755– 61. 
 
Semenza JC, McCullough JE, Flanders WD, McGeehin MA, Lumpkin JR. 1999: Excess hospital 

admissions during the July 1995 heat wave in Chicago. Am J Prev Med 16:269–277. 
 
Semenza JC, Rubin CH, Falter KH, Selanikio JD, Flanders WD, Howe HL, et al. 1996: Heat-

related deaths during the July 1995 heat wave in Chicago. N Engl J Med 335(2):84–90. 
 
Shepherd, J. M., O. O. Taylor, and C. Garza, 2004: A Dynamic GIS–Multicriteria Technique for 

Siting the NASA–Clark Atlanta Urban Rain Gauge Network. Journal of Atmospheric and 
Oceanic Technology, 21, 1346-1363. 

 
Smargiassi A, Goldberg MS, Plante C, Fournier M, Baudouin Y, Kosatsky T. 2009: Variation of 

daily warm season mortality as a function of micro-urban heat islands. J Epidemiol 
Community Health 63(8):659–664. 

 
Smoyer KE. 1998: Putting risk in its place: methodological considerations for investigating 

extreme event health risk. Soc Sci Med 47:1809–1824. 



32 
 

 
Stafoggia M, Forastiere F, Agostini D, Biggeri A, Bisanti L, Cadum E, et al. 2006: Vulnerability 

to heat-related mortality: a multicity, population-based, case-crossover analysis. 
Epidemiology 17(3):315–323. 

 
Stafoggia M, Forastiere F, Agostini D, Caranci N, de’Donato F, Demaria M, et al. 2008: Factors 

affecting in-hospital heat-related mortality: a multicity case-crossover analysis. J 
Epidemiol Community Health 62(3):209–215. 

 
Stern N. 2007: Stern Review on the Economics of Climate Change. Cambridge: Cambridge 

University Press. 
 
Taha, H., 1997: Modeling the impacts of large-scale albedo changes on ozone air quality in the 

South Coast Air Basin. Atmos. Environ., 31, 1667–1676. 
 
United States Census Bureau. 2011: Annual Estimates of the Resident Population for the United 

States, Regions, States, and Puerto Rico: April 1, 2010 to July 1, 2011. 
http://www.census.gov/popest/data/state/totals/2011/tables/NST-EST2011-01.csv.  

 
Vandentorren S, Bretin P, Zeghnoun A, Mandereau-Bruno L, Croisier A, Cochet C, et al. 2006: 

August 2003 heat wave in France: risk factors for death of elderly people living at home. 
Eur J Public Health 16(6):583–591. 

 
Vaneckova P, Beggs PJ, et al. 2008: Effect of temperature on mortality during the six warmer 

months in Sydney, Australia, between 1993 and 2004. Environ Res 108(3):361–9. 
 
Wainwright SH, Buchanan SD, Mainzer M, Parrish RG, Sinks TH. 1999: Cardiovascular 

mortality—the hidden peril of heat waves. Prehospital Disaster Med 14(4):222–231. 
 
Wallace RF, Kriebel D, Punnett L,Wegmann DH, Amoroso PJ. 2007: Prior heat illness 

hospitalization and risk of early death. Environ. Res. 104:290–95 
 
Wexler RK. 2002: Evaluation and treatment of heat-related illnesses. Am Fam Phys.65:2307–

2314. 
 
Whitman S, Good G, Donoghue ER, Benbow N, Shou W, Mou S. 1997: Mortality in Chicago 

attributed to the July 1995 heat wave. Am J Public Health 87:1515–1518. 
 
 
 
 
 
 
 
 
 

http://en.wikipedia.org/wiki/United_States_Census_Bureau
http://www.census.gov/popest/data/state/totals/2011/tables/NST-EST2011-01.csv
http://www.census.gov/popest/data/state/totals/2011/tables/NST-EST2011-01.csv
http://www.census.gov/popest/data/state/totals/2011/tables/NST-EST2011-01.csv


33 
 

APPENDIX: 

R code: 

mort <- read.csv( file.choose(), header=F) 

names(mort) = c("date","year","month","day","county", "tmpd.max", "tmpd.min", "death", 

"vuln", "AQI", "station", "airmass","s90max", "s90min","m90max", "m90min","s95max", 

"s95min","m95max", "m95min", "population") 

id <-mort$county 

tmpd.max <-mort$tmpd.max 

tmpd.max <- as.numeric(levels(tmpd.max)[tmpd.max]) 

tmpd.min <-mort$tmpd.min 

tmpd.min <- as.numeric(levels(tmpd.min)[tmpd.min]) 

death <-mort$death 

death <- as.numeric(levels(death)[death]) 

vuln <- mort$vuln 

vuln <- as.numeric(levels(vuln)[vuln])-6 

airmass <- mort$airmass 

year <-mort$year 

year <-as.numeric(levels(year)[year]) 

population <-as.numeric(mort$population) 

s95max <-mort$s95max 

s95min <-mort$s95min 

m95max <-mort$m95max 

m95min <-mort$m95min 

tmpd.max.trend <- filter(tmpd.max, rep(1/153,153), sides=2) 

tmpd.max.mean <- tmpd.max - tmpd.max.trend 

tmpd.min.trend <- filter(tmpd.min, rep(1/153,153), sides=2) 

tmpd.min.mean <- tmpd.min - tmpd.min.trend  

airmass2 <-rep(0, length(airmass)) 

airmass2[airmass=="MT+"] <-1 

airmass2[airmass=="MT++"] <-1 

s95max <- as.numeric(s95max)-2 
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m95max <- as.numeric(m95max)-2 

s95min <- as.numeric(s95min)-2 

m95min <- as.numeric(m95min)-2 

miss <-

is.na(id)|is.na(tmpd.max)|is.na(tmpd.min)|is.na(death)|is.na(vuln)|is.na(airmass2)|is.na(year)|is.na

(population)|is.na(s95max)|is.na(s95min)|is.na(m95max)|is.na(m95min) 

id <-id[!miss] 

tmpd.max <-tmpd.max[!miss] 

tmpd.min <-tmpd.min[!miss] 

death <- death[!miss] 

vuln <- vuln[!miss] 

airmass2 <- airmass2[!miss] 

year <- year[!miss] 

population <- population[!miss] 

s95max <- s95max[!miss] 

s95min <- s95min[!miss] 

m95max <- m95max[!miss] 

m95min <- m95min[!miss] 

library(lme4) 

lm.unpooled.contrast.from.grand.mean <- lm (death ~ id) 

anova(lm.unpooled.contrast.from.grand.mean) 

sum(coef(summary(lm.unpooled.contrast.from.grand.mean))[,4]<0.05/159) 

tapply(death,list(id),mean)  

summary(tmpd.max) 

summary(tmpd.min) 

tapply(tmpd.max,list(id),mean) 

summary(vuln) 

tapply(vuln,list(id),mean)  

M1 <- lmer(death ~s95max +vuln +s95max*vuln + ns( year,3) + (1|id)), family=poisson) 

summary(M1) 

display(M1) 
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glm.0 <-  glm(death ~ vuln, family=quasipoisson, offset=log(population)) 

summary(glm.0) 

pdf("glm.0.pdf") 

plot(glm(death~vuln, family=quasipoisson, offset=log(population))) 

abline(glm.0) 

dev.off() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


