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Figure 1.  Flowchart of NGS Data Analysis7 Used in Four Poultry-Related Studies 

 

 Producing reliable estimates of the burden of foodborne diseases has proven 

to be challenging9. Part of the problem is that about 80% of foodborne illnesses 

have been attributed to “unknown agents”4-6, and estimating the burden of unknown 

agents has considerable uncertainty associated with it9-12. Policymakers need 

accurate estimates of the burden of foodborne diseases so that they can have 

accurate representations of the magnitude and costs of foodborne diseases. 

Policymakers also need to be able to appropriately evaluate government-funded 

food safety initiatives and be able to improve these initiatives such that the burden 

of foodborne diseases will continue to decrease. 

 Next generation sequencing (NGS) may be able to improve foodborne illness 

estimates by identifying novel pathogens and consequently, reducing the 

percentage contribution of “unknown agents.” NGS is also promising in its ability to 

explore previously unsurmountable food safety research queries13. Hopefully, NGS 

can be implemented as a tool that will improve current trends of food safety 

stagnation9 by providing new insights into intervention strategies. Despite the 

powerful potential of NGS, researchers will face obstacles in creating standardized 

methodologies, especially in light of the rapid pace of NGS development2. In the 

future, full integration of NGS into the food safety system is likely to transform the 

practice of public health. 
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 Next generation sequencing (NGS) holds significant promise for improving 

public health1. Nevertheless, transforming powerful NGS techniques into practical 

public health solutions will be a major challenge in the coming years2. The purpose 

of this capstone project is to identify how NGS can improve estimates of the burden 

of foodborne diseases and contribute to improving food safety in general. Examples 

of poultry-related studies are used to demonstrate NGS data analysis techniques, 

with particular emphasis on the potential variability associated with the analysis of 

NGS data. 

 During May to August 2013, collected and prepared poultry-related samples 

for NGS. gained experience in setting up a Linux-based computational resource to 

process NGS data with QIIME 1.8.0, which is a software package that integrates 

various data analysis algorithms3. This capstone project incorporates some of the 

methods used during Mr. Caudill’s internships and integrates learning relevant to 

Environmental Health Science, Epidemiology, and Bioinformatics. 

RunID 
Quality 
Filtering OTU Picking Chimeras 

Taxonomy 
Assignment 

OTU Abundance 
Filtering 

1. RDP-c0.60 Default UCLUST (UCLUST defaults) Present RDP (c = 0.6) None 
2. RDP-c0.80 Default UCLUST (UCLUST defaults) Present RDP (c = 0.8) None 
3. default Default UCLUST (QIIME defaults) Present UCLUST None 
4. chimeras_removed_default Default UCLUST (QIIME defaults) Removed UCLUST None 
5. default_f0.005 Default UCLUST (QIIME defaults) Present UCLUST <0.005% 
6. chimeras_removed_default_f0.005 Default UCLUST (QIIME defaults) Removed UCLUST <0.005% 
7. chimeras_removed_usearch61_f0.005 Default USEARCH 6.1 (QIIME defaults) Removed UCLUST <0.005% 
8. chimeras_removed_Q20 ≥ Q20 UCLUST (QIIME defaults) Removed UCLUST None 
9. chimeras_removed_Q30_p0.95 ≥ Q30, p=0.95 UCLUST (QIIME defaults) Removed UCLUST None 

  Processing Production EggIsolate Hatchery12 
Total Samples 16   30   6   135   

Samples > 40 Sequnces 14   30   6   111   

RunID 
Num. of 

OTUs 
Avg. OTUs /  
14 Samples 

Num. of 
Taxa (L7) 

Table 
Density 

Num. of 
OTUs 

Avg. OTUs /  
30 Samples 

Num. of 
Taxa (L7) 

Table 
Density 

Num. of 
OTUs 

Avg. OTUs /  
6 Samples 

Num. of 
Taxa (L7) 

Table 
Density 

Num. of 
OTUs 

Avg. OTUs /  
111 Samples 

Num. of 
Taxa (L7) 

Table 
Density 

1. RDP-c0.60 111,798 7,986 546 0.194 456,899 15,230 510 0.344 121,762 20,294 158 0.482 1,914,663 17,249 1,143 0.103 
2. RDP-c0.80 111,802 7,986 486 0.201 456,920 15,231 439 0.352 121,724 20,287 145 0.502 1,914,351 17,246 1,003 0.106 
3. default 112,189 8,013 478 0.201 458,421 15,281 436 0.365 124,588 20,765 148 0.519 1,934,357 17,426 982 0.108 
4. chimeras_removed_default 111,944 7,996 476 0.201 452,600 15,087 430 0.364 124,612 20,769 145 0.524 1,931,867 17,403 976 0.108 
5. default_f0.005 110,633 7,902 390 0.202 441,532 14,718 133 0.790 117,603 19,601 34 0.863 1,801,115 16,226 232 0.194 
6. chimeras_removed_default_f0.005 110,436 7,888 390 0.202 437,136 14,571 131 0.790 117,559 19,593 32 0.865 1,799,577 16,212 234 0.191 
7. chimeras_removed_usearch61_f0.005 110,059 7,861 383 0.204 435,909 14,530 136 0.770 116,339 19,390 38 0.873 1,765,738 15,907 231 0.203 
8. chimeras_removed_Q20 107,465 7,676 472 0.196 431,915 14,397 418 0.359 99,525 16,588 106 0.489 1,757,041 15,829 941 0.098 
9. chimeras_removed_Q30_p0.95 79,231 5,659 429 0.183 328,118 10,937 306 0.392 26,808 4,468 49 0.350 1,189,602 10,717 804 0.078 
          
(3) chimeras present vs. (4) removed chimeras 0.2% 0.4% 0.0% 1.3% 1.4% 0.3% 0.0% 2.0% -1.0% 0.1% 0.6% 0.0% 
(5) chimeras present vs. (6) removed chimeras (f0.005) 0.2% 0.0% 0.0% 1.0% 1.5% 0.0% 0.0% 5.9% -0.2% 0.1% -0.9% 1.5% 
(4) default vs. (6) default, f0.005 (chimeras removed) 1.3% 18.1% -0.5% 3.4% 69.5% -117.0% 5.7% 77.9% -65.1% 6.8% 76.0% -76.9% 
(9) Q30_p0.95 vs. (6) default, f0.005 (chimeras removed) 28.3% -10.0% 9.4% 24.9% -133.6% 50.4% 77.2% -53.1% 59.5% 33.9% -243.6% 59.2% 

Table 1.  Estimates of the Annual Burden of Foodborne Pathogens in the U.S. 

(a)  from Mead et al., 19994 

  Illnesses Hospitalizations Deaths 

Known pathogens 14 million  (18%) 60,000  (18%) 1,800  (36%) 

Unknown agents 62 million  (82%) 265,000  (82%) 3,200  (64%) 

  Total 76 million  (100%) 325,000  (100%) 5,000  (100%) 

(b)  from Scallan, Hoekstra, et al., 20115 and from Scallan, Griffin, et al., 20116 

  Illnesses Hospitalizations Deaths 

Known pathogens 9.4 million  (20%) 55,961  (44%) 1,351  (44%) 
      90% CrIa 6.6-12.7 million 39,534-75,741 712-2,268 

Unknown agents 38.4 million  (80%) 71,878  (56%) 1,686  (56%) 
      90% CrIb 19.8-61.2 million 9,924-157,340 369-3,338 

  Totalc 47.8 million  (100%) 127,839  (100%) 3,037  (100%) 
      90% CrId 26.4-73.9 million 49,458-233,081 1,081-5,606 

  

  
a  90% credible interval as reported in Scallan, Hoekstra, et al., 2011 
b  90% credible interval as reported in Scallan, Griffin, et al., 2011 
c  Summation of estimates of known pathogens and unknown agents; not reported summed by Scallan et al. 
d  Approximation of 90% credible interval by summation of the component intervals; not reported by Scallan et al. 

 

 Table 2 shows the effect of differing algorithms and parameters on 

the number of OTUs, the number of taxa (to the L7, or species level), and 

the OTU table density (i.e. fraction of non-zero cells). Table 2 shows that 

the upstream data analysis methods can result in widely varying numbers 

of OTUs and taxa. Therefore, it is critical when interpreting studies 

incorporating NGS to thoroughly evaluate the data analysis methods to 

ensure that appropriate and accepted techniques have been employed. 

 

Table 2a. Explanation of Differing Data Analysis Algorithms and Parameters  

 

 

Table 2b. Effects of Differing Data Analysis Algorithms and Parameters  
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