I 7 8 5 The University of Georgia

College of Public Health

INTRODUCTION

Next generation sequencing (NGS) holds significant promise for improving public health¹. Nevertheless, transforming powerful NGS techniques into practical public health solutions will be a major challenge in the coming years². The purpose of this capstone project is to identify how NGS can improve estimates of the burden of foodborne diseases and contribute to improving food safety in general. Examples of poultry-related studies are used to demonstrate NGS data analysis techniques, with particular emphasis on the potential variability associated with the analysis of NGS data.

During May to August 2013, collected and prepared poultry-related samples for NGS. gained experience in setting up a Linux-based computational resource to process NGS data with QIIME 1.8.0, which is a software package that integrates various data analysis algorithms³. This capstone project incorporates some of the methods used during Mr. Caudill's internships and integrates learning relevant to Environmental Health Science, Epidemiology, and Bioinformatics.

Table 1. Estimates of the Annual Burden of Foodborne Pathogens in the U.S.

(a) from Mead et al., 1999⁴

	Illnesses	Hospitalizations							
Known pathogens	14 million (18%)	60,000 (18%)							
Unknown agents	62 million (82%)	265,000 (82%)							
Total	76 million (100%)	325,000 (100%)							
(b) from Scallan, Hoekstr	a, et al., 2011 ⁵ and from Scalla	n, Griffin, et al., 2011 ⁶							
	Illnesses	Hospitalizations							
Known pathogens	9.4 million (20%)	55,961 (44%)							
90% Crl ^a	6.6-12.7 million	39,534-75,741							
Unknown agents	38.4 million (80%)	71,878 (56%)							
90% Crl ^b	19.8-61.2 million	9,924-157,340							
Total ^c	47.8 million (100%)	127,839 (100%)							
90% Crl ^d	26.4-73.9 million	49,458-233,081							
 ^a 90% credible interval as reported in S ^b 90% credible interval as reported in S 									
•	thogens and unknown agents; not reported su								
^d Approximation of 90% credible interval by summation of the component intervals; not reported by Scallan et al.									

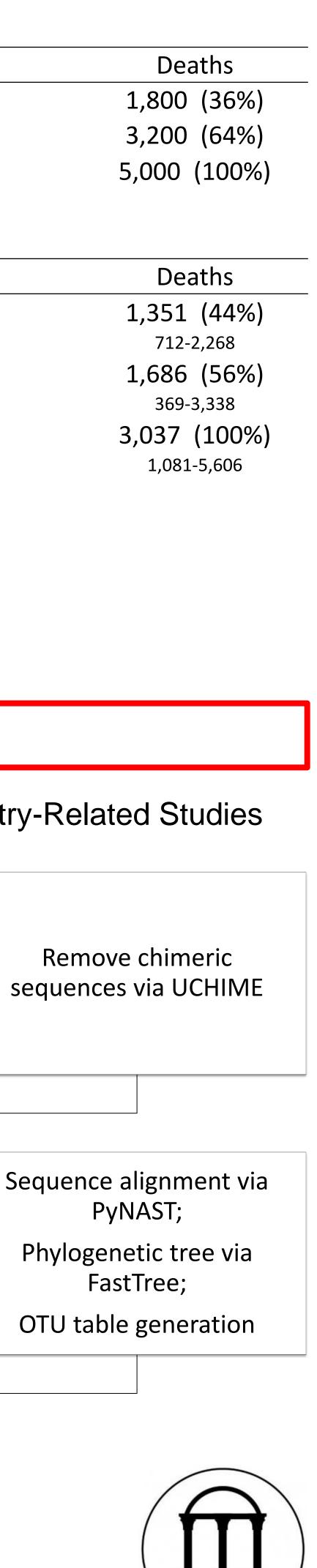

METHODS

Figure 1. Flowchart of NGS Data Analysis⁷ Used in Four Poultry-Related Studies

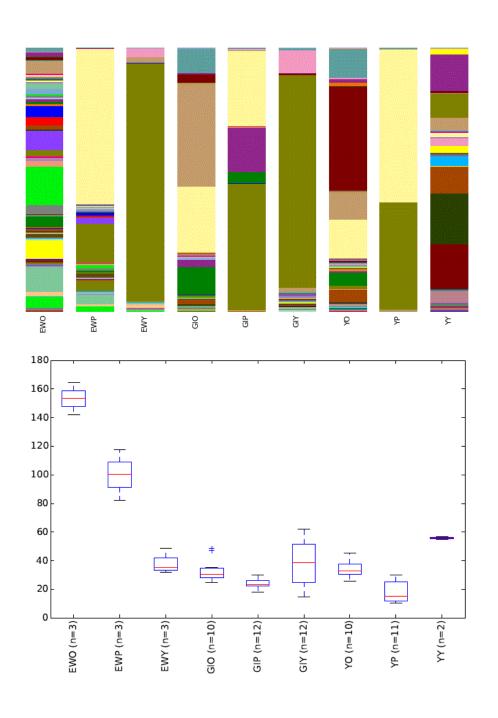
 Sample sequencing Golay barcodes added V4 region of 16S rRNA gene sequenced on Illumina MiSeq 	 Demultiplexing and quality-filtering QIIME defaults Q20 Q30, p=0.95 	→S
Open-reference OTU picking using Greengenes 13_8 (97% threshold) • UCLUST • USEARCH 6.1	 Taxonomy assignment UCLUST RDP Classifier c=0.8.0 c=0.60 	→ S
OTU abundance filtering for low-quality sequences ⁸ • Discard OTUs with a number of sequences <0.005% of the total	QIIME core diversity analyses at specified sequencing depth	

Potential contribution of next generation sequencing (NGS) to improving food safety and the estimates of the burden of foodborne diseases

College of Public Health, University of Georgia

I 7 8 5

Table 2 shows the effect of differing algorithms and parameters on the number of OTUs, the number of taxa (the OTU table density (i.e. fraction of non the upstream data analysis methods can of OTUs and taxa. Therefore, it is criti incorporating NGS to thoroughly evaluate ensure that appropriate and accepted tech


Table 2b. Effects of Differing Data Analysis

Total Samples Samples > 40 Sequnces

- RunID
- 1. RDP-c0.60
- 2. RDP-c0.80
- 3. default 4. chimeras_removed_default
- 5. default_f0.005
- 6. chimeras_removed_default_f0.005
- 7. chimeras_removed_usearch61_f0.005
- 8. chimeras_removed_Q20
- 9. chimeras_removed_Q30_p0.95
- (3) chimeras present vs. (4) removed chimeras
- (5) chimeras present vs. (6) removed chimeras (f0.005)
- (4) default vs. (6) default, f0.005 (chimeras removed)
- (9) Q30_p0.95 vs. (6) default, f0.005 (chimeras removed)

Figure 2a. Downstream Data Analysis Results at a Sequencing Depth of 220

Bar charts of taxa (genus, L6); box plots and alpha rarefaction Chao1 plot of richness estimate

SUMMARY AND CONCLUSIONS

Producing reliable estimates of the burden of foodborne diseases has proven to be challenging⁹. Part of the problem is that about 80% of foodborne illnesses have been attributed to "unknown agents"⁴⁻⁶, and estimating the burden of unknown agents has considerable uncertainty associated with it⁹⁻¹². Policymakers need accurate estimates of the burden of foodborne diseases so that they can have accurate representations of the magnitude and costs of foodborne diseases. Policymakers also need to be able to appropriately evaluate government-funded food safety initiatives and be able to improve these initiatives such that the burden of foodborne diseases will continue to decrease.

Next generation sequencing (NGS) may be able to improve foodborne illness estimates by identifying novel pathogens and consequently, reducing the percentage contribution of "unknown agents." NGS is also promising in its ability to explore previously unsurmountable food safety research queries¹³. Hopefully, NGS can be implemented as a tool that will improve current trends of food safety stagnation⁹ by providing new insights into intervention strategies. Despite the powerful potential of NGS, researchers will face obstacles in creating standardized methodologies, especially in light of the rapid pace of NGS development². In the future, full integration of NGS into the food safety system is likely to transform the practice of public health.

RESULTS

Table 2a. Explanation of Differing Data Analysis Algorithms and Parameters

_				Quality					Taxonomy		OTU Abundance Filtering	
	unID			Filtering		U Picking		Chimera	0			
	. RDP-c0.60			Default		LUST (UCLUST	,	Present	Υ.	•		
	RDP-c0.80			Default		LUST (UCLUST	,	Present	× ×	•		
	default		_	Default		LUST (QIIME de	•	Present		None		
	. chimeras_rem	—	ılt	Default		LUST (QIIME de		Remove		None	None <0.005%	
	default_f0.00			Default		LUST (QIIME de		Present	UCLUST	<0.005		
6	. chimeras_rem	noved_defau	ılt_f0.005	Default	UC	LUST (QIIME de	efaults)	Remove	d UCLUST	<0.005	%	
7	. chimeras_rem	noved_usear	ch61_f0.00	5 Default	US	EARCH 6.1 (QII	ME defaults) Remove	d UCLUST	<0.005	%	
8	. chimeras_rem	noved_Q20		≥ Q20	UC	LUST (QIIME de	efaults)	Remove	d UCLUST	None	None	
9	. chimeras_rem	noved_Q30_	p0.95	≥ Q30, ∣	p=0.95 UC	LUST (QIIME de	efaults)	Removed UCLUST None				
	Produc	ction			Egg	Isolate		Hatchery12				
30				6				135				
30				6	6			111				
of	Avg. OTUs /	Num. of	Table	Num. of	Avg. OTUs	/ Num. of	Table	Num. of	Avg. OTUs /	Num. of	Table	
	30 Samples	Taxa (L7)	Density	OTUs	6 Sample	s Taxa (L7)	Density	OTUs	111 Samples	Taxa (L7)	Densit	
9	15,230	510	0.344	121,762	20,294	158	0.482	1,914,663	17,249	1,143	0.103	
0	15,231	439	0.352	121,724	20,287	145	0.502	1,914,351	17,246	1,003	0.106	
1	15,281	436	0.365	124,588	20,765	148	0.519	1,934,357	17,426	982	0.108	
0	15,087	430	0.364	124,612	20,769	145	0.524	1,931,867	17,403	976	0.108	
2	14,718	133	0.790	117,603	19,601	34	0.863	1,801,115	16,226	232	0.194	
6	14,571	131	0.790	117,559	19,593	32	0.865	1,799,577	16,212	234	0.191	
9	14,530	136	0.770	116,339	19,390	38	0.873	1,765,738	15,907	231	0.203	
5	14,397	418	0.359	99,525	16,588	106	0.489	1,757,041	15,829	941	0.098	
.8	10,937	306	0.392	26,808	4,468	49	0.350	1,189,602	10,717	804	0.078	
1.3%1.4%0.3%1.0%1.5%0.0%).0%	2.0%	-1.0%	Ω	.1%	0.6%	0.0%			
		0.0%).0%	5.9%	-0.2%		.1%	-0.9%	1.5%		
	8.4%	69.5%	-117.0%	5.7%		77.9%	-65.1%		.8%	76.0%	-76.99	
24.9% -133.6% 50.4%						59.5%	33.9%			59.2%		

a (to the L	7, or spec	cies leve	el), and					Quality						Taxanamy		aundanca	
on-zero cells). Table 2 shows that RuniD								Quality Filtering OTU Picking				Chimer	•	Taxonomy OTU Abunda Assignment Filtering				
								Default	0	UCLUST (UCLUST defaults)			Present	U	U			
result in widely varying numbers 2. RDP-c0.60 2. RDP-c0.80								Default			ST (UCLUST (1	Present	•	RDP (c = 0.8) None			
ritical when interpreting studies 3. default								Default		UCLUST (QIIME defaults)			Present	Υ.	None			
		ata analys	•				nimeras_removed_default					UCLUST (QIIME defaults)		Removed		None		
		•				5. default f0.005						UCLUST (QIIME defaults)		Present			<0.005%	
;n	niques r	nave beer	n employ	/ed.		. chimeras_ren		ılt f0.005	Default			ST (QIIME de		Remove		< 0.005		
						 . chimeras_ren		—				RCH 6.1 (QIII				<0.005		
						. chimeras ren	—	—	≥ Q20			ST (QIIME de		Remove	ed UCLUST	None		
is	Algorith	nms and P	aramete	ers	9.	. chimeras_ren	noved_Q30_	p0.95	≥ Q30,	p=0.95	UCLUS	ST (QIIME de	efaults)	Remove	ed UCLUST	None		
	_		•															
		ProcessingProduction16301420					ction		EggIsolate					Hatchery12				
es								6					135					
es			Num of	Tabla	30		Num of	Tabla				Num of	Tabla	111 Num of		Num of	Tabla	
	Num. of OTUs	Avg. OTUs / 14 Samples	Num. of Taxa (L7)	Table Density	Num. of OTUs	Avg. OTUs / 30 Samples	Num. of Taxa (L7)	Table Density	Num. of OTUs	Avg. O 6 San	-	Num. of Taxa (L7)	Table Density	Num. of OTUs	Avg. OTUs / 111 Samples	Num. of Taxa (L7)	Table Density	
	111,798	7,986	546	0.194	456,899	15,230	510	0.344	121,762			158	0.482	1,914,663	17,249	1,143	0.103	
	111,802	7,986	486	0.201	456,920	15,230	439	0.352	121,724	20,2		145	0.482	1,914,351	17,245	1,003	0.105	
	112,189	8,013	478	0.201	458,421	15,281	436	0.365	121,724	20,2		148	0.502	1,934,357	17,426	982	0.100	
	111,944	7,996	476	0.201	452,600	15,087	430	0.364	124,612	20,7		145	0.515	1,931,867	17,403	976	0.108	
	110,633	7,902	390	0.202	441,532	14,718	133	0.790	117,603	19,6		34	0.863	1,801,115	16,226	232	0.194	
	110,436	7,888	390	0.202	437,136	14,571	131	0.790	117,559	19,5		32		1,799,577	16,212	234	0.191	
	110,059	7,861	383	0.204	435,909	14,530	136	0.770	116,339	19,3		38	0.873	1,765,738	15,907	231	0.203	
	, 107,465	7,676	472	0.196	431,915	14,397	418	0.359	, 99,525	, 16,5		106	0.489	1,757,041	15,829	941	0.098	
	79,231	5,659	429	0.183	328,118	10,937	306	0.392	26,808	4,4		49	0.350	1,189,602	10,717	804	0.078	
0.2%0.4%0.0%0.2%0.0%0.0%		0.0%	1	L.3%	1.4%	0.3%	(0.0%		2.0%	-1.0%	(0.1%	0.6%	0.0%			
			1	L.0%	1.5%	0.0%		0.0%		5.9%	-0.2%	(0.1%	-0.9%	1.5%			
		.3%	18.1%	-0.5%		8.4%	69.5%	-117.0%		5.7%		77.9%	-65.1%		5.8%	76.0%	-76.9%	
	28	8.3%	-10.0%	9.4%	2	4.9%	-133.6%	50.4%	7	7.2%		-53.1%	59.5%	3	3.9%	-243.6%	59.2%	

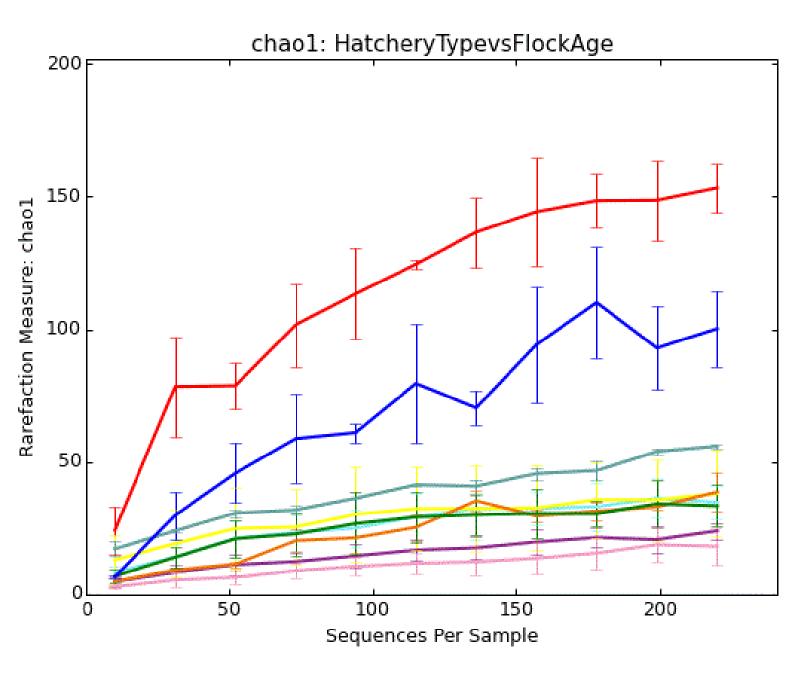
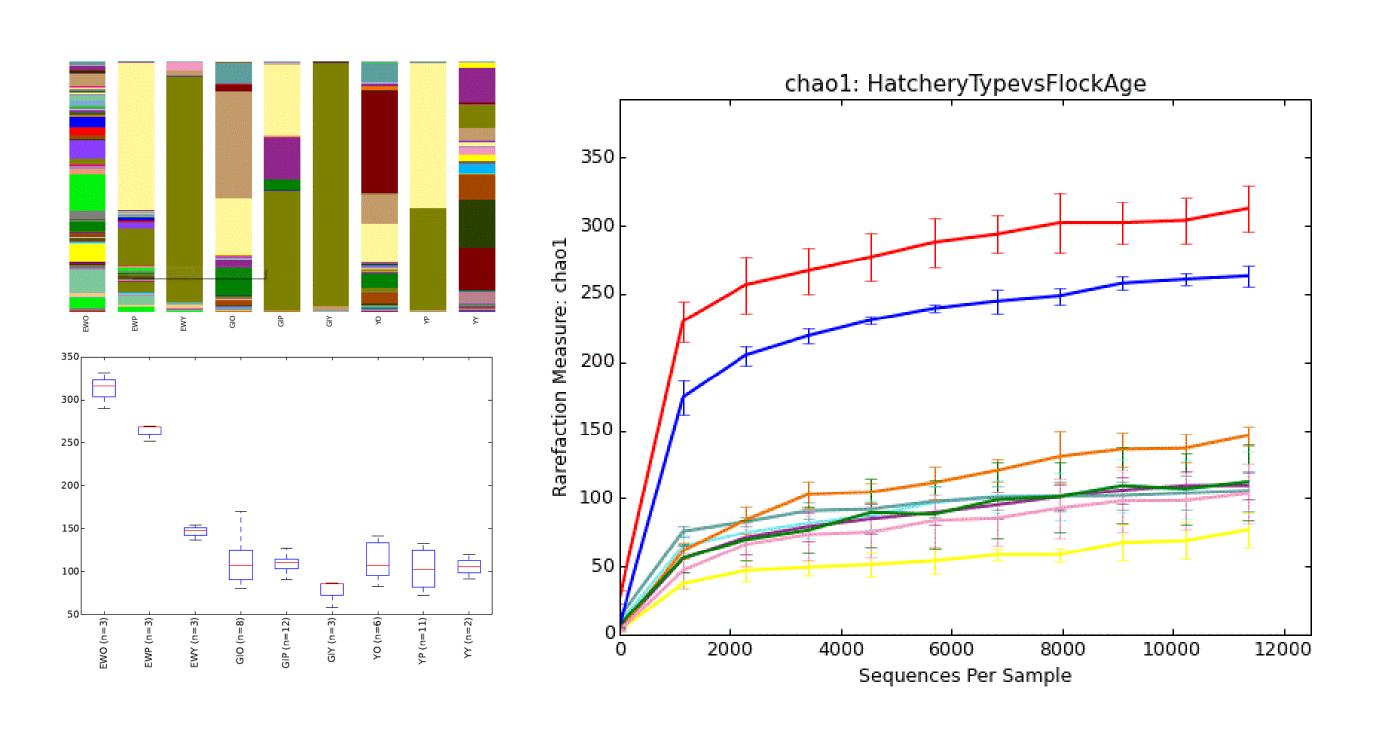



Figure 2b. Downstream Data Analysis Results at a Sequencing Depth 11,365

Bar charts of taxa (genus, L6); box plots and alpha rarefaction Chao1 plot of richness estimate

1. Struelens M, Brisse S. From molecular to genomic epidemiology: transforming surveillance and control of infectious diseases. Euro Surveill. 2013;18:20386

- bulletin. 2013:18(4):20382 3. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods. 2010;7(5):335-
- diseases. 2011:17(1):16
- Edward FD, ed. Methods in Enzymology. Vol Volume 531: Academic Press: 2013:371-444.
- 2013:10(1):57-59 9. Morris Jr JG. How safe is our food? Emerging infectious diseases. 2011;17(1):126-128.
- of Food Microbiology. 2001;69(3):209-215. Poultry science. 2013;92(2):562-572.

I would like to thank Dr. Michael J. Rothrock Jr. and Dr. Kelli L. Hiett for their support and training at the USDA Richard B. Russell Research Center. I would also like to thank Dr. Ming Zhang for reviewing my capstone project and Dr. Travis C. Glenn for introducing me to next generation sequencing technologies.

REFERENCES

2. Carriço J, Sabat A, Friedrich A, Ramirez M, Markers ESGfE. Bioinformatics in bacterial molecular epidemiology and public health: databases, tools and the next-generation sequencing revolution. Euro surveillance: bulletin Européen sur les maladies transmissibles= European communicable disease

4. Mead PS, Slutsker L, Dietz V, et al. Food-related illness and death in the United States. Emerging infectious diseases. 1999;5(5):607. 5. Scallan E, Hoekstra RM, Angulo FJ, et al. Foodborne illness acquired in the United States--major pathogens. Emerging infectious diseases. 2011;17(1).

6. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. Foodborne illness acquired in the United States—unspecified agents. Emerging infectious 7. Navas-Molina JA, Peralta-Sánchez JM, González A, et al. Chapter Nineteen - Advancing Our Understanding of the Human Microbiome Using QIIME. In:

8. Bokulich NA, Subramanian S, Faith JJ, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature methods.

10.Frenzen PD. Deaths due to unknown foodborne agents. Emerging infectious diseases. 2004;10(9):1536. 11.Phillips CV, LaPole LM. Quantifying errors without random sampling. BMC Medical Research Methodology. 2003;3(1):9.

12. Powell M, Ebel E, Schlosser W. Considering uncertainty in comparing the burden of illness due to foodborne microbial pathogens. International Journal 13.Diaz-Sanchez S, Hanning I, Pendleton S, D'Souza D. Next-generation sequencing: The future of molecular genetics in poultry production and food safety.

ACKNOWLEGEMENTS