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1.  INTRODUCTION AND OBJECTIVES 

 Next generation sequencing (NGS) holds significant promise for improving public health 

(Struelens & Brisse, 2013). Nevertheless, transforming powerful NGS techniques into practical 

public health solutions will be a major challenge in the coming years (Carriço, Sabat, Friedrich, 

Ramirez, & Markers, 2013). The purpose of this paper is to identify how NGS can improve 

estimates of the burden of foodborne diseases and contribute to improving food safety in general. 

Examples of poultry-related studies are used to demonstrate NGS data analysis techniques, with 

particular emphasis on the potential variability associated with the analysis of NGS data. 

The objective of this capstone paper is to demonstrate multi-disciplinary learning relevant 

to Environmental Health Science, Epidemiology, and Bioinformatics. During May to August 

2013, Mr. Caudill collected and prepared poultry-related samples for NGS (Site Description 

below). Mr. Caudill also gains experience in setting up a Linux-based computational resource to 

process NGS data with QIIME 1.8.0, which is a software package that integrates various data 

analysis algorithms (Caporaso, Kuczynski, et al., 2010). This capstone paper incorporates some 

of the methods used during Mr. Caudill’s internships and integrates learning relevant to both 

Environmental Health Science and Epidemiology.  
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2.  SITE DESCRIPTION AND MISSION 

 United States Department of Agriculture (USDA) is an executive department of the 

federal government. The overall mission of the USDA is to “provide leadership on food, 

agriculture, natural resources, rural development, nutrition, and related issues based on sound 

public policy, the best available science, and efficient management” (USDA, 2013, Fiscal Year 

2013 Agency Financial Report). 

 The USDA contains a number of agencies that are grouped within seven mission areas. 

One of the mission areas is the Research, Education, and Economics mission area, which 

contains four agencies, including the Agricultural Research Service (ARS) (USDA, 2013, Fiscal 

Year 2013 Agency Financial Report). The mission of ARS includes the objective to “ensure 

high-quality, safe food, and other agricultural products” (ARS, 2014, www.ars.usda.gov). 

 The ARS has an annual budget of approximately $1.1 billion, which it uses to conduct 

research at over 90 locations (ARS, 2014). The Richard B. Russell Research Center (RRC) is one 

of these ARS research locations and is located on College Station Road in Athens, GA. The 

principle investigator involved in the four poultry-related studies included in this paper is Dr. 

Michael J. Rothrock Jr., Ph.D., who is a Research Microbiologist at the RRC. 
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3.  ANALYSIS OF THE PROBLEM 

 This section discusses the challenges in obtaining accurate and precise estimates of the 

burden of foodborne diseases, the consequences of inaccurate estimates, and the potential for 

next generation sequencing to contribute to the solution. 

 

3.1  The problem of estimating the burden of foodborne diseases 

3.1.1  Original foodborne disease estimations 

Foodborne pathogens cause a substantial burden of disease in the United States. 

Quantifying the burden of disease caused by foodborne pathogens, however, has proven to be 

challenging. From the mid-1980s through most of the 1990s, estimates of foodborne illnesses 

varied significantly (Mead et al., 1999). For example, one study estimated that there were 12.6 

million cases of foodborne diseases in the United States each year (Todd, 1989), while another 

study reported a range from 23 million to 81 million or more cases (Archer & Kvenberg, 1985). 

In the mid-1990s, the Centers for Disease Control and Prevention (CDC), the United States 

Department of Agriculture (USDA), the Food and Drug Administration (FDA), and selected 

state health departments collaborated to create the Foodborne Diseases and Active Surveillance 

Network or more simply, FoodNet (Centers for Disease Control and Prevention, 1997, MMWR, 

46(12), 258). One of the primary goals of FoodNet was to assist in developing more precise 

estimates of foodborne diseases in the United States (Centers for Disease Control and 

Prevention, 1997, MMWR, 46(12), 258). In 1999, Mead and authors published the most 

definitive (over 6,300 citations from 1999 to 2014) (Google Scholar, 2014) estimates of the 

burden of foodborne diseases to date, using data from FoodNet, four other surveillance systems, 
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three national surveys, the National Vital Statistics System, and selected published studies (Mead 

et al., 1999). Mead and authors’ estimates of the annual burden of foodborne pathogens in the 

United States are shown in Table 1. Mead et al. estimated that foodborne pathogens were 

responsible for 76 million annual illnesses, including 14 million illnesses from known pathogens 

and 62 million illnesses from unknown agents (Mead et al., 1999). Mead et al. further estimated 

that foodborne pathogens caused 325,000 hospitalizations and 5,000 deaths each year (Mead et 

al., 1999). 

 

Table 1.  Estimates of the Annual Burden of Foodborne Pathogens in the United States 

    
(a)  from Mead et al., 1999 
  Illnesses Hospitalizations Deaths 
Known pathogens 14 million  (18%) 60,000  (18%) 1,800  (36%) 
Unknown agents 62 million  (82%) 265,000  (82%) 3,200  (64%) 
  Total 76 million  (100%) 325,000  (100%) 5,000  (100%) 

    
(b)  from Scallan, Hoekstra, et al., 2011 and from Scallan, Griffin, et al., 2011 
  Illnesses Hospitalizations Deaths 
Known pathogens 9.4 million  (20%) 55,961  (44%) 1,351  (44%) 
      90% CrIa 6.6-12.7 million 39,534-75,741 712-2,268 

Unknown agents 38.4 million  (80%) 71,878  (56%) 1,686  (56%) 
      90% CrIb 19.8-61.2 million 9,924-157,340 369-3,338 

  Totalc 47.8 million  (100%) 127,839  (100%) 3,037  (100%) 
      90% CrId 26.4-73.9 million 49,458-233,081 1,081-5,606 
 
 
a  90% credible interval as reported in Scallan, Hoekstra, et al., 2011 
b  90% credible interval as reported in Scallan, Griffin, et al., 2011 
c  Summation of estimates of known pathogens and unknown agents; not reported summed by Scallan et al. 
d  Approximation of 90% credible interval by summation of the component intervals; not reported by Scallan et al. 
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3.1.2  Uncertainty in foodborne disease estimations  

The results from Mead et al. have faced scrutiny in more recent years. The issue is that 

estimating illnesses, hospitalizations, and deaths resulting from foodborne diseases requires a 

sizeable number of parameters, and some of these parameters have a substantial amount of 

uncertainty (Morris Jr, 2011). For example, Powell and authors calculated that for a median 

value for E. coli O157:H7 of 75,000 cases per year, the 95% credible interval ranged from 

50,000 to 120,000 cases per year, indicating substantial uncertainty in the estimate (Powell, Ebel, 

& Schlosser, 2001). In another example, Phillips and LaPole demonstrated the effect of 

introducing uncertainty into the percentage of gastroenteritis cases caused by Noroviruses that 

was attributable to food (Phillips & LaPole, 2003). Mead and authors estimated that 40% of total 

illnesses caused by Noroviruses were attributable to food (Mead et al., 1999). Phillips and 

LaPole used Monte Carlo simulations with percentages ranging from 20% to 60% (as the actual 

percentage was not well-established) and found that only about 50% of the probability means fell 

within the already wide range of 50-100 million foodborne illnesses per year (Phillips & LaPole, 

2003). Thus, a reasonable assumption of variation for a single parameter of one pathogen was 

shown to result in considerable uncertainty in the reported 76 million total foodborne pathogen 

cases per year. In another study, Frenzen explained the challenges in estimating deaths from 

unknown pathogens (Frenzen, 2004). Frenzen highlighted the high degree of uncertainty 

involved in these estimations and consequently, casted significant doubt concerning the accuracy 

of the unknown pathogen death estimates presented by Mead et al. (Frenzen, 2004). 
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3.1.3  Updated foodborne disease estimations  

In light of the limitations of the Mead et al. study, requests were initiated to the CDC for 

the estimates to be re-calculated with better methodology (Morris Jr, 2011). Scallan and authors 

answered these requests with two papers published in 2011 (Scallan, Griffin, Angulo, Tauxe, & 

Hoekstra, 2011; Scallan, Hoekstra, et al., 2011). Instead of combining all of the estimates for 

foodborne pathogens into a single paper, Scallan and authors published one paper with estimates 

for 31 major known pathogens (Scallan, Hoekstra, et al., 2011) and another paper with estimates 

for unspecified agents (Scallan, Griffin, et al., 2011). While these estimates were published 

separately, they are also shown totaled in Table 1. Comparing section (a) and section (b) of Table 

1 could lead to the conclusion that food safety dramatically increased during the approximate 

decade between the papers. In fact, directly comparing the two estimates would suggest that 

foodborne illnesses decreased by about 37% over about a decade. While this conclusion would 

be appealing to many food safety stakeholders, this conclusion is not appropriate (Morris Jr, 

2011). To elaborate, the methods employed by Scallan et al., while improved over the methods 

used by Mead et al., were different enough to make any direct comparison of the estimates 

between papers inappropriate (Morris Jr, 2011). Notably, Scallan and authors improved the 

uncertainty calculations and included 90% credible intervals in their publications (Morris Jr, 

2011). While a direct comparison of the estimates between papers is not appropriate, it can be 

noted from Table 1 that the percentage of the contribution from known pathogens increased in 

the Scallan et al. estimates compared to the Mead et al. estimates. The most dramatic difference 

is seen in the estimates of foodborne-pathogen-related hospitalizations, in which Mead et al. 

estimated that known pathogens contributed to only 18% of the hospitalizations, while Scallan et 

al. estimated that known pathogens contributed to 44% of the hospitalizations. 
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3.2  The problem of inaccurate foodborne disease estimates 

Clearly, the goal for the nation is to continue to reduce foodborne illnesses and sequelae. 

Nevertheless, there are extensive costs associated with a high level of food safety (Antle, 1999). 

For example, the Government Accountability Office estimated that in 1999 the federal 

government spent $1 billion on food safety and the state governments spent an additional $300 

million (General Accounting Office, 2001, GAO-01-177). The high costs of food safety is one 

reason that getting good estimates of the burden of foodborne pathogens is critical. Policymakers 

need to be able to make decisions informed by both the cost of food safety and the cost of 

foodborne diseases. Policymakers will have more accurate information upon which to base their 

decisions if there are better estimates of the burden of foodborne diseases and subsequently, 

better estimates of the costs associated with foodborne diseases. Two papers published by 

Scharff illustrate how changing the estimates of the burden foodborne diseases affects the 

estimates of the cost of foodborne diseases (Scharff, 2010, 2012). Using the 1999 Mead et al. 

estimates, Scharff estimated the annual cost of foodborne illnesses to be $152 billion (95% CI: 

$39-$265 billion) (Scharff, 2010). Using similar methods based on the 2011 Scallan et al. 

estimates, Scharff estimated the annual cost of foodborne illnesses to be $77.7 billion (90% CI: 

$28.6-$144.6 billion) (Scharff, 2012). Thus, the updated cost of illness estimate based on Scallan 

et al. was substantially lower, about half of the original estimate. Scientists must strive to 

produce the most accurate estimates of the burden of foodborne diseases so that policymakers 

can be informed by the most accurate estimates of the magnitude and cost of these diseases. 
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3.3  NGS as part of the solution 

3.3.1  Addressing the problem of inaccurate estimates 

While policymakers deserve the best information, producing accurate estimates of the 

burden of foodborne diseases is not easy. For example, Table 1 shows that both studies estimated 

that about 80% of the total foodborne illnesses involved unknown pathogens. Furthermore, the 

credible intervals reported by Scallan et al. were much wider for unknown pathogens than for 

known pathogens (Scallan, Griffin, et al., 2011; Scallan, Hoekstra, et al., 2011). While this is 

expected, it is important to note that the vast majority (~80%) of the estimated total burden of 

foodborne diseases is comprised of data with a high degree of uncertainty. Therefore, even the 

improved methods employed by Scallan et al. produced results that are imprecise. 

One strategy to improve accuracy of the estimates would be to increase the percentage of 

illnesses attributable to known pathogens. This, of course, is much easier said than done. A basic 

problem with this strategy is that pathogens can be tricky to identify. In 1985, Stanley and 

Konopka noted that “only a few percent of the bacterial cells enumerated by direct microscopic 

count can be cultured and identified” (Staley & Konopka, 1985). A more recent study reported 

that scientists have probably not yet identified even half of the pathogens that have clinical 

significance (Oakley et al., 2013). In the past few decades, technology has been the major 

limiting factor in investigating these unknown bacterial communities. In 1985, Stanley and 

Konopka had to rely on community metabolism and other indirect measures to estimate species 

diversity (Staley & Konopka, 1985). But scientists now have new tools available to identify 

pathogens: next generation sequencing (NGS) and subsequent metagenomic analysis (Oakley et 

al., 2013). Genome sequence information has the potential to shed light on previously 

underexplored bacterial communities and identify sets of organisms that have previously eluded 
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cultivation techniques (Rappé & Giovannoni, 2003). Implementing NGS technology in the realm 

of food safety may eventually allow more “unknown agents” to become “known pathogens,” 

which should increase the accuracy of the burden of foodborne diseases and subsequently, 

provide policymakers with more accurate information concerning the magnitude and cost of 

foodborne diseases. 

 

3.3.2  Addressing the problem of stagnant food safety initiatives 

In addition to providing policymakers with more accurate estimates of the burden and 

cost of foodborne diseases, policymakers need information about another topic: the effectiveness 

of government-funded food safety initiatives. As previously discussed, it is not appropriate to 

simply compare estimates of foodborne diseases in one study to another study; comparing 

estimates from two different studies would only be appropriate if the estimation methods were 

the same or very similar. One solution for addressing the effectiveness of food safety programs 

would be to examine FoodNet data over time (Morris Jr, 2011). One of the original goals of 

FoodNet was actually for the purpose of evaluating the Hazard Analysis Critical Control Point 

(HACCP) rule implemented by the USDA (Voetsch et al., 2004). FoodNet and HACCP were 

both implemented in the mid-1990s, and over 75% of meat and poultry production plants had 

implemented a HACCP plan by January 1998 (Voetsch et al., 2004). By examining the FoodNet 

data, Morris concludes that the USDA’s regulatory changes, including HACCP, were associated 

with a decrease in foodborne diseases (Morris Jr, 2011). Unfortunately, Morris also concludes 

that “after the initial decline since the USDA regulatory changes in 1995, one does not see 

evidence of sustained improvement” (Morris Jr, 2011). Thus, while foodborne illnesses may not 

be getting more prevalent in the United States, presumably the current estimate shown in Table 1 
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of almost 50 million foodborne illnesses annually is not acceptable as the level of illnesses the 

United States desires to maintain. In regards to the more or less stagnant levels of foodborne 

illnesses in the United States, NGS may also be part of the solution (See Section 3.4). Once 

again, if more “unknown agents” become “known pathogens,” it is likely that food safety 

techniques can become more targeted to novel pathogens, and presumably, food safety programs 

will be more successful in reducing the burden of foodborne diseases. 

 

3.4  NGS one step at a time: using poultry as an example 

 Applying NGS techniques to improve food safety will be a long process. Just as it has 

taken many years to develop successful and useful methods of bacterial cultivation for some of 

the known pathogens, it will likely take many years to learn how to make NGS part of the food 

safety solution. Many food safety risks, and therefore many potential interventions, exist along 

the “farm-to-fork” continuum (Batz et al., 2005). Thus, determining where to most effectively 

intervene will be challenging. Food safety interventions may be most successfully designed if 

there is an ability to associate particular food sources with specific illnesses (Morris Jr, 2011; 

Pires et al., 2009). With that in mind, NGS applications discussed later in this paper will focus on 

only one food source, poultry. The application of NGS techniques to poultry production will 

serve as an example of how learning more about the microbiomes associated with a particular 

food source can be the foundation for future food safety interventions. Furthermore, it should be 

noted that examining poultry is relevant as it was found to be the third leading vehicle of 

foodborne illness outbreaks from 1990-2003 (Dewaal, Hicks, Barlow, Alderton, & Vegosen, 

2006).   
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4.  ANALYSIS OF NGS SOLUTIONS  

This section gives background information on NGS generally and more specially in 

relation to bacterial communities. This section also examines multiple sources of variation, with 

particular emphasis on data analysis. Variation from data processing is demonstrated with 

examples based on four poultry-related studies. 

 

4.1  Introduction to Next Generation Sequencing (NGS) 

In light of the current limitations on bacterial cultivation (Rappé & Giovannoni, 2003) 

and the significant burden of unknown agents (Scallan, Griffin, et al., 2011), the previous section 

proposed that NGS could assist in producing better estimates of the burden of foodborne diseases 

and potentially lead to reductions in the burden of these diseases. Nevertheless, while NGS is 

becoming increasingly more affordable (Koboldt, Steinberg, Larson, Wilson, & Mardis, 2013), 

NGS is not a straightforward solution. Substantial differences exist among preparation steps, 

sequencing methods, and data analyses (Metzker, 2010). Just as the different methods employed 

by Mead et al. and Scallan et al. made direct comparison of their results inappropriate, the 

different combinations of methods used in NGS and subsequent data analyses can make 

comparisons among these studies challenging (Metzker, 2010). That notwithstanding, NGS 

technologies offer unprecedented speed, affordability, and potential (Shendure & Ji, 2008). “It is 

an exciting time to be a molecular ecologist” (Glenn, 2011). 

One of the biggest differences in NGS is the sequencing platforms themselves. Glenn 

compared the following manufacturers and platforms: Life Technologies / Applied Biosystems 

(3730, capillary; SOLiD); Roche / 454 (FLX; GS); Illumina (GA IIx; HiSeq; MiSeq; NextSeq); 
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Ion Torrent (Proton; PGM); and Pacific Biosciences (RS II) (Glenn, 2011). These platforms have 

substantial differences in terms of their sequencing methods, amplification methods, read 

lengths, cost per run and per read, error types and rates, etc. (Glenn, 2011). The choice of which 

platform or combination of platforms to use is highly dependent on the type and amount of data 

to be processed (Glenn, 2011). Nevertheless, for the past few years, Illumina platforms have held 

the highest percentage of the NGS market (Karrow & Toner, 2011). For most molecular 

ecologists, the Illumina MiSeq has been the best choice, but Illumina’s new NextSeq 500 

platform may gain popularity in the coming years (Glenn, 2011).  

 

4.2  Choosing appropriate samples 

 In addition to choosing which platform will be most appropriate for the data, researchers 

must choose what and how much they want to sample. Using poultry as the example, researchers 

must choose a more specific final product: meat or eggs. In regards to either of these products, 

the ultimate food safety concern is the final product available to the consumer. Nevertheless, if 

the final product is unsatisfactory in terms of food safety, the contamination had to have come 

from somewhere. Thus, in addition to collecting samples from the final product itself, it makes 

sense to sample the flock to attempt to determine if there are potential ways to intervene at the 

farm or during processing. When choosing to sample the flock, however, there are many 

important considerations. Factors such as age, environment, and diet can all impact the bacterial 

communities (Gabriel, Lessire, Mallet, & Guillot, 2006). Other considerations would include 

whether to sample feces and/or organs. When sampling the gastrointestinal tract, it is important 

to take into account that different areas of the gastrointestinal tract harbor varying bacterial 

communities (Sekelja et al., 2012). Thus, for even just one food source, it is evident that 
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developing the best sampling techniques for the application of NGS will require substantial 

methodological research. 

 

4.3  Effect of extraction methods 

 Once samples that are appropriate for the particular research question have been 

collected, researchers must choose how to extract the genetic material that will later be prepared 

for sequencing. With complex environmental samples, such as feces and soils, that contain 

substantial quantities of organic and inorganic matter, the extraction method used to isolate 

bacterial genetic material from the other sample components could potentially have a significant 

impact on the resulting quantity and quality of the bacterial DNA. There are currently two main 

methods for extracting DNA from these complex environmental samples: (1) mechanical 

disruption using bead-beating and (2) enzymatic disruption to release bacterial cells and inhibit 

PCR inhibitors chemically (Rothrock, Hiett, Caudill, Cicconi-Hogan, & Caporaso, 2014). 

Rothrock and authors found that the mechanical disruption resulted in higher quantities of 16S 

rDNA, the enzymatic disruption appeared to be associated with greater diversity, and a novel 

hybrid method produced results sharing aspects of both approaches (Rothrock et al., 2014). Thus, 

in addition to having variability from different sequencing platforms and substantial variability 

from different sample types (even when related to the same flock or bird), it is important for 

researchers to note that the extraction method can also significantly impact their findings. 
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4.4  NGS data analysis 

 In addition to the variability from the sequencing platform, sampling methodology, and 

extraction method, the programs and parameters used in analyzing the sequencing data can 

produce considerable variability. This subsection will examine the effects of differing data 

analysis programs and parameters by using data from four studies conducted by Dr. Michael 

Rothrock, Jr. at the Russell Research Center of the USDA Agricultural Research Service in 

Athens, GA. Figure 1 illustrates a general flowchart for the data analysis used in these four 

studies. Before consider the details of the data analysis methods, this section will provide a brief 

introduction to microbial sequencing theory and the methods used in these four studies.  

 

Figure 1.  Flowchart of NGS Data Analysis Used in Four Poultry-Related Studies 

 

Sample sequencing
• Golay barcodes added
• V4 region of 16S rRNA 
gene sequenced on 
Illumina MiSeq

Demultiplexing and 
quality-filtering
• QIIME defaults
• Q20
• Q30, p=0.95

Remove chimeric 
sequences via UCHIME

Open-reference OTU 
picking using Greengenes 
13_8 (97% threshold)
• UCLUST
• USEARCH 6.1

Taxonomy assignment
• UCLUST
• RDP Classifier
• c=0.8.0
• c=0.60

Sequence alignment via 
PyNAST;           

Phylogenetic tree via 
FastTree;                        

OTU table generation

OTU abundance filtering 
for low-quality sequences
• Discard OTUs with a 
number of sequences 
<0.005% of the total

QIIME core diversity 
analyses at specified 

sequencing depth
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4.4.1  Background on microbial DNA sequencing 

 To assign taxonomy and to determine phylogenetic relationships among bacteria, the 

most commonly used stable code segment is the 16S ribosomal RNA (rRNA) gene, also called 

16S rDNA (Clarridge, 2004). The 16S rRNA is the small subunit of the bacterial ribosome, and 

the gene that codes for this small subunit has been highly conserved among different bacterial 

species (Clarridge, 2004). Highly conserved regions of the 16S rRNA gene make good 

candidates for designing universal primers that can target desired regions of the gene 

(Chakravorty, Helb, Burday, Connell, & Alland, 2007). Of course, if all of the 16S rDNA were 

highly conserved, the gene would not be useful for distinguishing one group of bacteria from 

another. Fortunately, despite the overall high level of conservation, the 16S rRNA gene contains 

nine hypervariable regions, labeled V1-V9, that can serve as molecular fingerprints for differing 

bacteria (Chakravorty et al., 2007).  

 

4.4.2  Sequencing on the Illumina MiSeq platform 

 With about 15 million reads per run for the Illumina MiSeq v2 instrument (Glenn, 2011), 

using the capacity of the machine cost-effectively for microbial data requires a method for 

combining multiple samples or even multiple studies per run. More specifically, individual 

samples can be labeled with sequences such as the Golay barcodes described by Caporaso and 

authors (Caporaso et al., 2012). A mapping file can then be used after sequencing to demultiplex 

the data such that the base pair barcodes are replaced by meaningful sample identifiers (Navas-

Molina et al., 2013). The studies conducted by Dr. Rothrock were processed in this manner. 

After extracting and preparing the DNA, the samples were sent to the Argonne National 
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Laboratory, where the V4 region of the 16S rRNA gene was PCR amplified with primers 

containing MiSeq sequencing adapters and Golay barcodes. Libraries were constructed and run 

on the MiSeq platform. The resulting forward and reverse paired-end reads and an index read for 

the barcodes were made available for download. 

 

4.4.3  Data analysis using QIIME software 

 The number of programs available to analyze NGS data is almost overwhelming. 

Fortunately, bioinformaticians have reduced the complexity and improved the data analysis 

workflow by “wrapping” many algorithms into unified software packages. One particularly 

popular wrapper for microbial metagenomics is the wrapper called ‘quantitative insights into 

microbial ecology,’ or more simply, QIIME (Caporaso, Kuczynski, et al., 2010). According to 

the QIIME web information (http://qiime.org/), QIIME version 1.8.0 released in December 2013 

is the most stable version as of April 28, 2014. QIIME can be run on a variety of computer 

platforms, including Linux (ex. Ubuntu), the Amazon EC2 cloud, or via VirtualBox (QIIME 

Team, 2014). For the four studies discussed in this section, data analysis was conducted via 

QIIME 1.8.0 installed on local computer in Dr. Rothrock’s lab running Ubuntu 13.10. 

 

4.4.3.1  Upstream data analysis using QIIME 1.8.0 

  The first step in upstream data analysis is demultiplexing and quality-filtering the data 

(Navas-Molina et al., 2013). For the four studies included in this section, demultiplexing and 

quality-filtering was performed with the QIIME split_libraries_fastq.py script, using the fastq 

files provided by the Argonne National Laboratory. This script demultiplexes by using a 
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mapping file to replace the Golay barcodes with meaningful sample identifiers. Quality-filtering 

was performed with two different sets of parameters. The first set of parameters were the QIIME 

1.8.0 defaults, which were three maximum consecutive low-quality base calls (r=3), 75% 

consecutive high-quality base calls (p=0.75), Q4 as the minimum Phred quality score (q=3), and 

zero ambiguous bases (n=0) (Navas-Molina et al., 2013). For later comparison, the data were 

also quality-filtered with Q20 as the minimum Phred quality score (q=19). To discover rare 

OTUs (Bokulich et al., 2013), the data were also quality-filtered with Q30 as the minimum Phred 

quality score (q=29) and 95% consecutive high-quality base calls (p=0.95). 

 After demultiplexing and quality-filtering, chimeric sequences were removed from the 

data. “Chimeras are hybrid products between multiple parent sequences that can be falsely 

interpreted as novel organisms, thus inflating apparent diversity” (Haas et al., 2011). As 

recommend by Navas-Molina and authors, chimeric sequences were identified by the UCHIME 

(Edgar, Haas, Clemente, Quince, & Knight, 2011) algorithm that is integrated into USEARCH 

6.1 (Edgar, 2010). Compared to Chimera Slayer (Haas et al., 2011), UCHIME has been shown to 

have increased sensitivity and speed when detecting chimeric sequences (Edgar et al., 2011). In 

QIIME, chimeric sequences were identified via UCHIME by using the identify_chimeric_seqs.py 

script with the -m usearch61 option. The filter_fasta.py script was then used to remove the list of 

identified chimeric sequences from the data.  

 The remainder of the upstream analysis was conducted in QIIME by applying the 

pick_open_reference_otus.py script to the forward reads. This script picks the operational 

taxonomic units (OTUs), assigns taxonomy, aligns the sequences, creates a phylogenetic tree, 

and generates the OTU tables used in downstream analysis (Caporaso, Kuczynski, et al., 2010). 

Picking OTUs (pick_otus.py) can be accomplished using a variety of methods. For these four 
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studies, OTUs were picked using the recommended open-reference approach, in which 

sequences were matched using a subset of the Greengenes 13_8 database (DeSantis et al., 2006) 

filtered at 97% identity, and then non-matching sequences were added de novo, clustering OTUs 

at a 97% threshold to correspond approximately with species identity (Navas-Molina et al., 

2013). To examine potential differences between clustering algorithms, clustering was performed 

with the QIIME 1.8.0 default of UCLUST (Edgar, 2010) and also with USEARCH 6.1.  

 Taxonomy was also assigned (assign_taxonomy.py) using two different algorithms: (1) 

UCLUST and (2) RDP Classifier (Wang, Garrity, Tiedje, & Cole, 2007). With both algorithms, 

taxonomy was assigned using the Greengenes 13_8 reference database. The primary taxonomy 

assignment algorithm used was the QIIME 1.8.0 default of UCLUST, using default parameters. 

For comparison to methods frequently employed in QIIME 1.7.0, the previous default taxonomy 

assignment of the RDP Classifier was used at two different minimum confidence levels for 

recording an assignment, the default level of 80% (c=0.8) and a reduced level of 60% (c=0.6). 

 Sequence alignment (align_seqs.py) was performed by PyNAST (Caporaso, Bittinger, et 

al., 2010) using the Greengenes core set (DeSantis et al., 2006), and a phylogenetic tree was 

constructed (make_phylogeny.py) by FastTree (Price, Dehal, & Arkin, 2010) for use in 

downstream analysis methods relying on phylogenetic distance. An OTU table was also 

generated (make_otu_table.py) in the BIOM format (McDonald et al., 2012) for downstream 

analysis. 
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4.4.3.2  Downstream data analysis using QIIME 1.8.0 

 Despite the overall high accuracy of Illumina sequencing, some false positive OTUs can 

appear as a result of errors in the sequencing process (Bokulich et al., 2013). In the absence of a 

mock bacterial community that can calibrate the upstream results, the recommended procedure is 

to discard OTUs with a number of sequences <0.005% of the total number of sequences 

(Bokulich et al., 2013; Navas-Molina et al., 2013). This can be accomplished in QIIME using the 

filter_otus_from_otu_table.py script with the --min_count_fraction 0.00005 option (Navas-

Molina et al., 2013). 

 The rest of the downstream analysis can be largely carried out with the 

core_diversity_analyses.py script, which is a QIIME workflow script that combines many other 

scripts such as: core_diversity_analyses.py, beta_diversity_through_plots.py, 

summarize_taxa_through_plots.py, make_distance_boxplots.py, compare_alpha_diversity.py, 

otu_category_significance.py, and biom summarize-table. The charts, plots, and statistics 

generated by the core_diversity_analyses.py script can be modified with a user-specified 

parameter file. Additionally, it is critical to note that these downstream analyses depend on the 

sequencing depth (Navas-Molina et al., 2013). While the appropriate sequencing depth will 

depend on the data, Navas-Molina and authors recommend at least “rarefying over 1000 

sequences per sample for Illumina MiSeq, because samples below this level often suffer from 

other quality issues as well” (Navas-Molina et al., 2013). 
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4.4.4  Examples of the effects of differing data analysis methods 

 This subsection will briefly examine the variability associated with choosing different 

data analysis methods using QIIME 1.8.0 with four studies conducted by Dr. Rothrock. All of 

the studies are poultry-related, but their particular objectives are unimportant for this subsection. 

The purpose of this subsection is simply to demonstrate in broad terms how different data 

analysis methods can affect the findings. 

 

4.4.4.1  Examples of effects on upstream data analysis 

 Table 2 and Table 3 are presented in Appendix A. The data in these tables are the output 

of the steps described in Section 4.4.3.1. Table 2 shows that the effect of removing chimeric 

sequences varies by study. Removing chimeric sequences had virtually no effect on the 

EggIsolate study, but about 1.5% of the sequences were removed by filtering for chimeras in the 

Production study. Table 2 also shows the effect of filtering by a Phred quality score of Q4 and 

better versus a score of Q20 and better. For two of the studies, only about 10% of additional 

sequences were removed by increasing the score to Q20, but for the other two studies, about 25% 

of additional sequences were removed. 

 Table 3 shows the effect of differing parameters on the number of OTUs, the number of 

taxa (to the L7, or species level), and the OTU table density (i.e. fraction of non-zero cells). 

Table 3 shows that the upstream data analysis methods can result in widely varying numbers of 

OTUs and taxa. Obviously, the number of OTUs and taxa identified in the upstream analysis 

affect the findings from the later downstream analysis. Therefore, it is critical when interpreting 
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studies incorporating NGS to thoroughly evaluate the data analysis methods to ensure that 

appropriate and accepted techniques have been employed. 

 

4.4.4.2  Examples of effects on downstream data analysis 

 Figure 2 and Figure 3 are presented in Appendix B. The data in these figures are the 

output of the steps described in Section 4.4.3.2. Because the steps used to generate Figure 2 and 

Figure 3 were identical except for the sequencing depth, these figures illustrate that downstream 

analysis is dependent on sequencing depth. In Figure 2, the sequencing depth is 220, but in 

Figure 3, the sequencing depth is 11,365. In each figure, part (a) is bar charts of taxa (to the L6, 

or genus level), part (b) is boxplots of the Chao1 richness estimate, and part (c) is rarefaction 

plots of the Chao1 richness estimate. The relatively low sequencing depth in Figure 2 has the 

advantage of including more samples, as any samples containing less than 11,365 sequences 

were excluded from analysis in Figure 3. The greater sequencing depth in Figure 3, however, has 

substantially increased estimates of the Chao1 richness estimate. The rarefaction curve in Figure 

3 part (c) appears to level off considerably more than the curve in Figure 2 part (c). When the 

rarefaction curve levels off, it suggests that increasing the sampling depth beyond that point does 

not have a major impact on the estimate. Likewise, the non-leveling curve in Figure 2 part (c) 

suggests that a better estimate would be achieved by increasing the sampling depth. Despite the 

differences between the figures, it is interesting to note that the general relationships among the 

sample categories remain similar for this estimate in this study. 
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5.  DEVELOPMENT OF A PUBLIC HEALTH AGENDA 

 NGS has the potential to offer unique solutions for improving food safety (Diaz-Sanchez, 

Hanning, Pendleton, & D’Souza, 2013). In addition to detecting molecular signatures of known 

pathogens, NGS techniques can also cluster non-matching sequences into novel OTUs and then 

assign taxonomy as appropriate (Edgar, 2010). Eventually, scientists may be able to move more 

of the “unknown agents” into the “known pathogens” category, which would improve foodborne 

illness estimates and hopefully provide more opportunities for successful food safety 

interventions. To help accomplish this goal, a public health agenda should include research 

aimed at determining how the microbiomes differ in humans with and without gastrointestinal 

illnesses. This research could attempt to establish illness patterns and likely determine novel 

pathogens. 

 NGS can also serve to improve food safety by providing better understanding of 

pathogen introduction, transportation, and fate. As previously mentioned, if there are 

unacceptable levels of pathogens on the final product, they had to come from somewhere. In this 

regard, Singer and authors argue that “to achieve further reductions in foodborne illness levels in 

humans, effective pre-harvest interventions are needed” (Singer et al., 2007). Therefore, in 

addition to using NGS on human samples, a public health agenda should include research using 

NGS at the farm level. Potential research questions could investigate topics such as (1) where 

known pathogens first become introduced or where they spike, (2) differences between samples 

collected on the farm, during processing, and on the final product, (3) and the effect of 

management practices on pathogen load, including examination of conventional and alternative 

farming practices. 
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 Another critical aspect of a public health agenda is the development of more standardized 

methods that will allow for better comparisons among studies using NGS techniques related to 

food safety (Carriço et al., 2013). Standardizing methods will be a major challenge, however, 

because the pace of development is so rapid with both NGS instruments and with data analysis 

methods. Consequently, the current public agenda should probably focus on conducting research 

to determine the most useful methods for sampling, sequencing, and data analysis in regards to a 

particular food safety issue or product. Future research can then focus on standardizing methods 

to an extent where NGS can become a well-integrated aspect of the food safety system. 
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6.  SUMMARY AND CONCLUSIONS 

 Producing accurate and precise estimates of the burden of foodborne diseases has proven 

to be challenging (Morris Jr, 2011). Part of the problem is that about 80% of foodborne illnesses 

have been attributed to “unknown agents” (Mead et al., 1999; Scallan, Griffin, et al., 2011; 

Scallan, Hoekstra, et al., 2011), and estimating the burden of unknown agents has considerable 

uncertainty associated with it (Frenzen, 2004; Morris Jr, 2011; Phillips & LaPole, 2003; Powell 

et al., 2001). Policymakers need accurate estimates of the burden of foodborne diseases so that 

they can have accurate representations of the magnitude and costs of foodborne diseases. 

Policymakers also need to be able to appropriately evaluate government-funded food safety 

initiatives and be able to improve these initiatives such that the burden of foodborne diseases will 

continue to decrease. 

 Next generation sequencing (NGS) may be able to improve foodborne illness estimates 

by identifying novel pathogens and consequently, reducing the percentage contribution of 

“unknown agents.” NGS is also promising in its ability to explore previously unsurmountable 

food safety research queries (Diaz-Sanchez et al., 2013). Hopefully, NGS can be implemented as 

a tool that will improve current trends of food safety stagnation by providing new insights into 

intervention strategies. Despite the powerful potential of NGS, researchers will face obstacles in 

creating standardized methodologies, especially in light of the rapid pace of NGS development 

(Carriço et al., 2013). In the meantime, researchers should continue striving to produce the best 

NGS methods for their particular research questions. In the future, full integration of NGS into 

the food safety system is likely to transform the practice of public health. 
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APPENDICES 

Appendix A 

Table 2.  Effects of Quality and Chimera Filtering on the Number of Sequences 
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Table 3.  Effects of Data Analysis Parameters 
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Appendix B 

Figure 2.  Downstream Data Analysis Results at a Sequencing Depth of 220 

        

(a) Taxa bar charts, depth = 220 (b) Boxplots of Chao1, depth = 220 

 

(c) Rarefaction plot of Chao1, depth = 220  
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Figure 3.  Downstream Data Analysis Results at a Sequencing Depth of 11,365 

         

(a) Taxa bar charts, depth = 11,365 (b) Boxplots of Chao1, depth = 11,365 

 

(c) Rarefaction plot of Chao1, depth = 11,365 
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